计算机科学 ›› 2022, Vol. 49 ›› Issue (11): 259-265.doi: 10.11896/jsjkx.220500098

• 计算机网络 • 上一篇    下一篇

WiPasLoc:基于WiFi的被动式室内人员定位新方法

王冬子1, 郭政鑫1, 桂林卿1,2, 黄海平1,2, 肖甫1,2   

  1. 1 南京邮电大学计算机学院 南京 210023
    2 江苏省无线传感网高技术研究重点实验室 南京 210023
  • 收稿日期:2022-05-12 修回日期:2022-07-05 出版日期:2022-11-15 发布日期:2022-11-03
  • 通讯作者: 肖甫(xiaof@njupt.edu.cn)
  • 作者简介:(17712917797@163.com)
  • 基金资助:
    国家自然科学基金重点项目(61932013);国家自然科学基金(61972201);江苏省自然科学基金(BK20190068)

WiPasLoc:A Novel Passive Indoor Human Localization Method Based on WiFi

WANG Dong-zi1, GUO Zheng-xin1, GUI Lin-qing1,2, HUANG Hai-ping1,2, XIAO Fu1,2   

  1. 1 School of Computer Science & Technology,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
    2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks,Nanjing 210023,China
  • Received:2022-05-12 Revised:2022-07-05 Online:2022-11-15 Published:2022-11-03
  • About author:WANG Dong-zi,born in 1996,postgra-duate.His main research interests include Internet of things and mobile computing.
    XIAO Fu,born in 1980,Ph.D,professor,Ph.D supervisor.His main research interests include areas of Internet of things and mobile computing.
  • Supported by:
    Key Program of National Natural Science Foundation of China (61932013),National Natural Science Foundation of China(61972201)and Natural Science Foundation of Jiangsu Province,China(BK20190068).

摘要: 被动式室内人员定位是实现普适无线感知系统的基础。然而在实际生活中,商用WiFi信号易受到周围环境的影响,导致现有基于WiFi的被动式室内定位工作难以从复杂的接收信号中准确分离出目标人员动态分量。针对上述问题,提出了一种精确的被动式室内人员定位系统WiPasLoc,其通过利用商用WiFi设备中提取到的信道状态信息(Channel State Information,CSI),实现了高精度的室内定位。首先,结合CSI子载波的信号质量完成动态多普勒频移(Doppler Frequency Shift,DFS) 估计;然后,通过基于双窗口的信号到达角(Angle of Arrive,AoA)的估计方法,从信道状态信息中精准分离出目标人员的信号分量;最后,结合人员的初始位置信息提出轨迹拟合算法,实现了精确的被动式室内人员定位。实验结果表明:WiPasLoc对室内人员运动轨迹定位的中值误差为80cm,相比现有典型的Widar2.0定位精度提升了25.9%。

关键词: WiFi, 室内定位, 信道状态信息, 多普勒频移

Abstract: Passive indoor human localization is the basis for implementing ubiquitous wireless sensing systems.However,commercial WiFi signals are easily affected by the surrounding environment in our life,which makes it difficult for existing WiFi-based indoor localization works to accurately separate the dynamic human components from the complex received signals.To address this problem,this paper proposes the WiPasLoc,a passive indoor human localization system,which achieves high accuracy indoor localization by using the channel state information(CSI) extracted from commercial WiFi devices.Firstly,the Doppler frequency shift(DFS) estimation is carried out in combination with the signal quality of the CSI subcarriers.Then,the target person signal component is precisely separated from the channel state information by using a double-window-based angle of arrival(AoA) estimation method.Finally,combined with the initial position information of the personnel,accurate passive indoor human localization is achieved by the proposed trajectory fitting algorithm.Experimental results show that the median error of WiPasLoc for indoor personnel trajectory positioning is 80cm,which is 25.9% higher than the existing typical Widar2.0 positioning accuracy.

Key words: WiFi, Indoor Localization, Channel state information(CSI), Doppler frequency shift(DFS)

中图分类号: 

  • TP391
[1]ADIB F M,KABELAC Z,KATABI D,et al.3D tracking via body radio reflections[C]//Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation(NSDI’14).USENIX Association,USA,2014:317-329.
[2]BOCCA M,KALTIOKALLIO O,PATWARI N,et al.Multiple Target Tracking with RF Sensor Networks[J].IEEE Transactions on Mobile Computing,2014,13(8):1787-1800.
[3]ROBERT S,AMANDA L,CHRIS S,et al.Elderly persons’perception and acceptance of using wireless sensor networks to assist healthcare[J].International Journal of Medical Informa-tics,2009,78(12):788-801.
[4]KARANAM C R,KORANY B,MOSTOFI Y.Tracking fromone side:multi-person passive tracking with wifi magnitude measurements[C]//IEEE IPSN.2019:181-192.
[5]TADAYON N,RAHMAN M T,HAN S,et al.Decimeter ranging with channel state information[J].IEEE Transactions on Wireless Communications,2019,18(7):3453-3468.
[6]MANIKANTA K,KIRAN J,DINESH B,et al.SpotFi:Decimeter Level Localization Using WiFi[C]//Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication(SIGCOMM ’15).Association for Computing Machinery,New York,USA,2015:269-282.
[7]SEN S,LEE J K,KIM K H,et al.Avoiding multipath to revive inbuilding WiFi localization[C]//Proceeding of the 11th Annual International Conference on Mobile systems,applications,and services(MobiSys’13).Association for Computing Machinery,New York,NY,USA,2013:249-262.
[8]XIE Y,LI Z,LI M.Precise power delay profiling with commodity WiFi[J].IEEE Transactions on Mobile Computing,2018,18(6):1342-1355.
[9]KOTARU M,JOSHI K,BHARADIA D,et al.Spotfi:Decimeter level localization using wifi[C]//ACM SIGCOMM.2015:269-282.
[10]QIAN K,WU C,ZHOU Z,et al.Inferring motion directionusing commodity WiFi for interactive exergames[C]//ACM CHI.2017:1961-1972.
[11]QIAN K,WU C,ZHANG Y,et al.Widar2.0:Passive human tracking with a single WiFi link[C]//ACM MobiSys.2018:350-361.
[12]ZHOU R,TANG M,GONG Z,et al.Freetrack:Device-free human tracking with deep neural networks and particle filtering[J].IEEE Systems Journal,2019,14(2):2990-3000.
[13]AYYALASOMAYAJULA R,ARUN A,WU C,et al.Deeplearning based wireless localization for indoor navigation[C]//ACM MobiCom.2020:1-14.
[14]CHEN X,LI H,ZHOU C,et al.Fido:Ubiq uitous fine-grained wifi-based localization for unlabelled users via domain adaptation[C]//Proceedings of the Web Conference.2020:23-33.
[15]QIAN K,WU C S,YANG Z,et al.Widar:Decimeter-Level Passive Tracking via Velocity Monitoring with Commodity WiFi[C]//Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing(Mobihoc’17).Association for Computing Machinery,New York,NY,USA,2017:1-10.
[16]LI X,ZHANG D Q,LV Q,et al.IndoTrack:Device-Free Indoor Human Tracking with Commodity WiFi[J].Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies,2017,1(3):1-22.
[17]WANG Z Q,ZHANG J A,XU M,et al.Single-Target Real-Time Passive WiFi Tracking[J].arXiv:2019.06006,2021.
[18]RAO B D,HARI K S.Performance analysis of root-music[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1989,37(12):1939-1949.
[19]WU D,ZENG Y W,GAO R Y,et al.WiTraj:Robust indoor motion tracking with WiFi signals[J/OL].IEEE Transactions on Mobile Computing.HTTPS://DOI.ORG/10.1109/TMC.2021.3133114.
[20]NIU K,WANG X,ZHANG F,et al.Rethinking Doppler Effect for Accurate Velocity Estimation with Commodity WiFi Devices[J].IEEE Journal on Selected Areas in Communications,2020,40(7):2164-2178.
[21]GAO R Y,ZHANG M,ZHANG J,et al.Towards position-independent sensing for gesture recognition with Wi-Fi[J].Procee-dings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies,2021:5,(2):1-28.
[1] 邵子灏, 杨世宇, 马国杰.
室内信息服务的基础——低成本定位技术研究综述
Foundation of Indoor Information Services:A Survey of Low-cost Localization Techniques
计算机科学, 2022, 49(9): 228-235. https://doi.org/10.11896/jsjkx.210900260
[2] 唐清华, 王玫, 唐超尘, 刘鑫, 梁雯.
基于M2M相遇区的PDR室内定位方法
PDR Indoor Positioning Method Based on M2M Encounter Region
计算机科学, 2022, 49(9): 283-287. https://doi.org/10.11896/jsjkx.210800270
[3] 周楚霖, 陈敬东, 黄凡.
基于无迹粒子滤波的WiFi-PDR融合室内定位技术
WiFi-PDR Fusion Indoor Positioning Technology Based on Unscented Particle Filter
计算机科学, 2022, 49(6A): 606-611. https://doi.org/10.11896/jsjkx.210700108
[4] 卿朝进, 杜艳红, 叶青, 杨娜, 张岷涛.
存在CSI估计错误的增强型ELM叠加CSI反馈方法
Enhanced ELM-based Superimposed CSI Feedback Method with CSI Estimation Errors
计算机科学, 2022, 49(6A): 632-638. https://doi.org/10.11896/jsjkx.210800036
[5] 王炽, 常俊.
基于3D卷积神经网络的CSI跨场景手势识别方法
CSI Cross-domain Gesture Recognition Method Based on 3D Convolutional Neural Network
计算机科学, 2021, 48(8): 322-327. https://doi.org/10.11896/jsjkx.200600122
[6] 尤凌, 管张均.
一种低复杂度的水声OFDM通信系统子载波分配算法
Low-complexity Subcarrier Allocation Algorithm for Underwater OFDM Acoustic CommunicationSystems
计算机科学, 2021, 48(6A): 387-391. https://doi.org/10.11896/jsjkx.201100064
[7] 王颖颖, 常俊, 武浩, 周详, 彭予.
基于WiFi-CSI的入侵检测方法
Intrusion Detection Method Based on WiFi-CSI
计算机科学, 2021, 48(6): 343-348. https://doi.org/10.11896/jsjkx.200700006
[8] 李丽, 郑嘉利, 罗文聪, 全艺璇.
基于近端策略优化的RFID室内定位算法
RFID Indoor Positioning Algorithm Based on Proximal Policy Optimization
计算机科学, 2021, 48(4): 274-281. https://doi.org/10.11896/jsjkx.200300028
[9] 徐鹤, 吴满星, 李鹏.
基于ARIMA模型的RFID室内相对位置定位算法
RFID Indoor Relative Position Positioning Algorithm Based on ARIMA Model
计算机科学, 2020, 47(9): 252-257. https://doi.org/10.11896/jsjkx.200400038
[10] 李丽,郑嘉利,王哲,袁源,石静.
基于异步优势动作评价的RFID室内定位算法
RFID Indoor Positioning Algorithm Based on Asynchronous Advantage Actor-Critic
计算机科学, 2020, 47(2): 233-238. https://doi.org/10.11896/jsjkx.190100070
[11] 王文博, 黄璞, 杨章静.
基于超宽带、里程计、RGB-D融合的室内定位方法
Indoor Positioning Method Based on UWB Odometer and RGB-D Fusion
计算机科学, 2020, 47(11A): 334-338. https://doi.org/10.11896/jsjkx.200200033
[12] 田春元, 余江, 常俊, 王彦舜.
NWI:基于CSI的非视距信号识别方法
NWI:CSI Based Non-line-of-sight Signal Recognition Method
计算机科学, 2020, 47(11): 327-332. https://doi.org/10.11896/jsjkx.190900019
[13] 贾玉福, 李明磊, 刘文平, 胡胜红, 蒋洪波.
一种基于WiFi相异度的群组感知分析方法
Group Perception Analysis Method Based on WiFi Dissimilarity
计算机科学, 2020, 47(10): 63-68. https://doi.org/10.11896/jsjkx.200600014
[14] 翟书颖, 李茹, 李波, 郝少阳.
视觉群智感知应用综述
Survey on Applications of Visual Crowdsensing
计算机科学, 2019, 46(6A): 11-15.
[15] 王哲, 郑嘉利, 李丽, 袁源, 石静.
蝗虫群优化和极限学习机相结合的RFID室内定位算法
RFID Indoor Positioning Algorithm Combining Grasshopper Optimization Algorithm and Extreme Learning Machine
计算机科学, 2019, 46(12): 120-125. https://doi.org/10.11896/jsjkx.181202381
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!