计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 93-102.doi: 10.11896/jsjkx.220500197

• 可解释性人工智能 • 上一篇    下一篇

基于深度学习的智能设备故障诊断研究综述

黄迅迪, 庞雄文   

  1. 华南师范大学计算机学院 广州 510631
  • 收稿日期:2022-05-23 修回日期:2022-09-20 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 庞雄文(augepang@163.com)
  • 作者简介:(958128275@qq.com)
  • 基金资助:
    国家自然科学基金(U1911401);广东大数据科学中心项目(U1911401)

Review of Intelligent Device Fault Diagnosis Based on Deep Learning

HUANG Xundi, PANG Xiongwen   

  1. School of Computer Science,South China Normal University,Guangzhou 510631,China
  • Received:2022-05-23 Revised:2022-09-20 Online:2023-05-15 Published:2023-05-06
  • About author:HUANG Xundi,born in 1998,postgra-duate,is a member of China Computer Federation.His main research interests include deep learning and intelligent fault diagnosis.
    PANG Xiongwen,born in 1972,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include data integration,data mining and big data.
  • Supported by:
    National Natural Science Foundation of China(U1911401) and Guangdong Big Data Science Center Project(U1911401).

摘要: 智能设备故障诊断技术(Intelligent Fault Diagnosis,IFD)将深度学习理论应用于设备故障诊断,能自动识别设备的健康状态和故障类型,在设备故障诊断领域引起了广泛关注。智能设备故障诊断通过构建端到端的AI模型和算法将设备监测数据与机器健康状态关联以实现设备故障诊断,但设备故障诊断的模型和算法较多且相互之间并不通用,采用与监测数据不相符的模型进行故障诊断会导致诊断准确率大幅度下滑。为解决这一问题,在全面调查设备故障诊断相关文献的基础上,首先简述深度设备故障诊断的模型框架,再根据具体应用场景和设备监测数据类型对模型算法进行分类介绍、列表对比及总结,最后针对存在的问题分析了未来的发展方向。本综述有望为智能设备故障诊断的研究提供有益的参考。

关键词: 设备故障诊断, 深度学习, 特征提取, 故障诊断算法, 智能故障诊断

Abstract: Intelligent fault diagnosis applies deep learning theory to equipment fault diagnosis,which can automatically identify the health state and fault type of equipment,and has attracted extensive attention in the field of equipment fault diagnosis.Intelligent equipment fault diagnosis realizes equipment fault diagnosis by building end-to-end AI models and algorithms to associate equipment monitoring data with machine health status.However,there are many models and algorithms for equipment fault diagnosis,but they are not common to each other.Using models that are inconsistent with monitoring data for fault diagnosis will lead to a significant decline in diagnosis accuracy.In order to solve this problem,based on the comprehensive investigation of the relevant literature of equipment fault diagnosis,this paper first briefly describes the model framework of in-depth equipment fault diagnosis,then classifies,lists,compares and summarizes the models and algorithms according to the specific application scenarios and equipment monitoring data types,and finally analyzes the future development direction according to the existing problems.This review is expected to provide a useful reference for the research of intelligent equipment fault diagnosis.

Key words: Equipment fault diagnosis, Deep learning, Feature extraction, Fault diagnosis algorithm, Intelligent fault diagnosis

中图分类号: 

  • TP399
[1]ZHANG S,ZHANG S B,WANG B N,et al.Deep learning algorithms for bearing fault diagnostics-A comprehensive review[J].IEEE Access,2020,8:29857-29881.
[2]LEI Y,YANG B,JIANG X,et al.Applications of machine lear-ning to machine fault diagnosis:A review and roadmap[J].Mechanical Systems and Signal Processing,2020,138:106587.
[3]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536.
[4]HINTON G E.Training products of experts by minimizing con-trastive divergence[J].Neural Computation,2002,14(8):1771-1800.
[5]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J/OL].https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
[6]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[7]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial nets[J/OL].https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.
[8]LI T,ZHOU Z,LI S,et al.The emerging graph neural networks for intelligent fault diagnostics and prognostics:A guideline and a benchmark study[J].Mechanical Systems and Signal Proces-sing,2022,168:108653.
[9]PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on knowledge and data engineering,2009,22(10):1345-1359.
[10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J/OL].https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
[11]BAI Y,YANG J,WANG J,et al.Image representation of vibration signals and its application in intelligent compound fault diag-nosis in railway vehicle wheelset-axlebox assemblies[J].Mechanical Systems and Signal Processing,2021,152:107421.
[12]KIM Y,NA K,YOUN B D.A health-adaptive time-scale representation(HTSR) embedded convolutional neural network for gearbox fault diagnostics[J].Mechanical Systems and Signal Processing,2022,167:108575.
[13]SHI J,PENG D,PENG Z,et al.Planetary gearbox fault diagnosis using bidirectional-convolutional LSTM networks[J].Mechanical Systems and Signal Processing,2022,162:107996.
[14]DING Y,JIA M,MIAO Q,et al.A novel time-frequency Transformer based on self-attention mechanism and its application in fault diagnosis of rolling bearings[J].Mechanical Systems and Signal Processing,2022,168:108616.
[15]XU Y,LI Z,WANG S,et al.A hybrid deep-learning model for fault diagnosis of rolling bearings[J].Measurement,2021,169:108502.
[16]ZHAO M,ZHONG S,FU X,et al.Deep residual networks with adaptively parametric rectifier linear units for fault diagnosis[J].IEEE Transactions on Industrial Electronics,2020,68(3):2587-2597.
[17]LIU S,JIANG H,WU Z,et al.Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis[J].Mechanical Systems and Signal Processing,2022,163:108139.
[18]LIU J,ZHANG C,JIANG X.Imbalanced fault diagnosis of rol-ling bearing using improved MsR-GAN and feature enhancement-driven CapsNet[J].Mechanical Systems and Signal Processing,2022,168:108664.
[19]PAN T,CHEN J,XIE J,et al.Deep feature generating network:A new method for intelligent fault detection of mechanical systems under class imbalance[J].IEEE Transactions on Industrial Informatics,2020,17(9):6282-6293.
[20]WU X,ZHANG Y,CHENG C,et al.A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machi-nery[J].Mechanical Systems and Signal Processing,2021,149:107327.
[21]SU H,XIANG L,HU A,et al.A novel method based on meta-learning for bearing fault diagnosis with small sample learning under different working conditions[J].Mechanical Systems and Signal Processing,2022,169:108765.
[22]ZHANG K,TANG B,DENG L,et al.A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels[J].Mechanical Systems and Signal Processing,2021,161:107963.
[23]YU X,TANG B,ZHANG K.Fault diagnosis of wind turbinegearbox using a novel method of fast deep graph convolutional networks[J].IEEE Transactions on Instrumentation and Mea-surement,2021,70:1-14.
[24]ZHANG D,STEWART E,ENTEZAMI M,et al.Intelligentacoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J].Measurement,2020,156:107585.
[25]LI C,MO L,YAN R.Rolling bearing fault diagnosis based on horizontal visibility graph and graph neural networks[C]//2020 International Conference on Sensing,Measurement & Data Analytics in the Era of Artificial Intelligence(ICSMD).IEEE,2020:275-279.
[26]YANG C,ZHOU K,LIU J.SuperGraph:Spatial-temporalgraph-based feature extraction for rotating machinery diagnosis[J].IEEE Transactions on Industrial Electronics,2021,69(4):4167-4176.
[27]LI T,ZHAO Z,SUN C,et al.Multireceptive field graph convolutional networks for machine fault diagnosis[J].IEEE Transactions on Industrial Electronics,2020,68(12):12739-12749.
[28]ZHAO X,JIA M,LIU Z.Semisupervised graph convolution deep belief network for fault diagnosis of electormechanical system with limited labeled data[J].IEEE Transactions on Industrial Informatics,2020,17(8):5450-5460.
[29]LI Q,SHEN C,CHEN L,et al.Knowledge mapping-based adversarial domain adaptation:A novel fault diagnosis method with high generalizability under variable working conditions[J].Mechanical Systems and Signal Processing,2021,147:107095.
[30]XIA Y,SHEN C,WANG D,et al.Moment matching-based intra-class multisource domain adaptation network for bearing fault diagnosis[J].Mechanical Systems and Signal Processing,2022,168:108697.
[31]SHI Y,DENG A,DING X,et al.Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery:An unsupervised multisource domain adaptation method[J].Mechanical Systems and Signal Processing,2022,164:108219.
[32]ZHU J,CHEN N,SHEN C.A new multiple source domain ada-ptation fault diagnosis method between different rotating machines[J].IEEE Transactions on Industrial Informatics,2020,17(7):4788-4797.
[33]XIA P,HUANG Y,LI P,et al.Fault Knowledge Transfer Assisted Ensemble Method for Remaining Useful Life Prediction[J].IEEE Transactions on Industrial Informatics,2021,18(3):1758-1769.
[34]QIN Y,YAO Q,WANG Y,et al.Parameter sharing adversarial domain adaptation networks for fault transfer diagnosis of plane-tary gearboxes[J].Mechanical Systems and Signal Processing,2021,160:107936.
[35]LEI Z,WEN G,DONG S,et al.An intelligent fault diagnosis method based on domain adaptation and its application for bea-rings under polytropic working conditions[J].IEEE Transactions on Instrumentation and Measurement,2020,70:1-14.
[36]LI Y,SONG Y,JIA L,et al.Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning[J].IEEE Transactions on Industrial Informatics,2020,17(4):2833-2841.
[37]LI W,CHEN Z,HE G.A novel weighted adversarial transfer network for partial domain fault diagnosis of machinery[J].IEEE Transactions on Industrial Informatics,2020,17(3):1753-1762.
[38]JIAO J,ZHAO M,LIN J.Multi-Weight Domain AdversarialNetwork for Partial-Set Transfer Diagnosis[J].IEEE Transactions on Industrial Electronics,2021,69(4):4275-4284.
[39]YANG B,XU S,LEI Y,et al.Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults[J].Mechanical Systems and Signal Processing,2022,162:108095.
[40]FENG L,ZHAO C.Fault description based attribute transfer for zero-sample industrial fault diagnosis[J].IEEE Transactions on Industrial Informatics,2020,17(3):1852-1862.
[1] 陈冲, 陈杰, 张慧, 蔡磊, 薛亚茹.
深度学习可解释性综述
Review on Interpretability of Deep Learning
计算机科学, 2023, 50(5): 52-63. https://doi.org/10.11896/jsjkx.221000044
[2] 王慧妍, 于明鹤, 于戈.
基于深度学习的异质信息网络表示学习方法综述
Deep Learning-based Heterogeneous Information Network Representation:A Survey
计算机科学, 2023, 50(5): 103-114. https://doi.org/10.11896/jsjkx.220800112
[3] 贾天豪, 彭力.
残差学习与循环注意力下的SSD目标检测算法
SSD Object Detection Algorithm with Residual Learning and Cyclic Attention
计算机科学, 2023, 50(5): 170-176. https://doi.org/10.11896/jsjkx.220400085
[4] 雪峰豪, 蒋海波, 唐聃.
深度学习在健康医疗中的应用研究综述
Review of Deep Learning Applications in Healthcare
计算机科学, 2023, 50(4): 1-15. https://doi.org/10.11896/jsjkx.220600166
[5] 韩雪明, 贾彩燕, 李轩涯, 张鹏飞.
传播树结构结点及路径双注意力谣言检测模型
Dual-attention Network Model on Propagation Tree Structures for Rumor Detection
计算机科学, 2023, 50(4): 22-31. https://doi.org/10.11896/jsjkx.220200037
[6] 伍瀚, 聂佳浩, 张照娓, 何志伟, 高明煜.
基于深度学习的视觉多目标跟踪研究综述
Deep Learning-based Visual Multiple Object Tracking:A Review
计算机科学, 2023, 50(4): 77-87. https://doi.org/10.11896/jsjkx.220300173
[7] 王娅丽, 张凡, 余增, 李天瑞.
基于交互注意力和图卷积网络的方面级情感分析
Aspect-level Sentiment Classification Based on Interactive Attention and Graph Convolutional Network
计算机科学, 2023, 50(4): 196-203. https://doi.org/10.11896/jsjkx.220100105
[8] 刘泽润, 郑红, 邱俊杰.
基于抽象语法树裁剪的智能合约漏洞检测研究
Smart Contract Vulnerability Detection Based on Abstract Syntax Tree Pruning
计算机科学, 2023, 50(4): 317-322. https://doi.org/10.11896/jsjkx.220300063
[9] 董永峰, 黄港, 薛婉若, 李林昊.
融合IRT的图注意力深度知识追踪模型
Graph Attention Deep Knowledge Tracing Model Integrated with IRT
计算机科学, 2023, 50(3): 173-180. https://doi.org/10.11896/jsjkx.211200134
[10] 华晓凤, 冯娜, 于俊清, 何云峰.
基于规则推理的足球视频任意球射门事件检测
Shooting Event Detection of Free Kick in Soccer Video Based on Rule Reasoning
计算机科学, 2023, 50(3): 181-190. https://doi.org/10.11896/jsjkx.220300062
[11] 梅鹏程, 杨吉斌, 张强, 黄翔.
一种基于三维卷积的声学事件联合估计方法
Sound Event Joint Estimation Method Based on Three-dimension Convolution
计算机科学, 2023, 50(3): 191-198. https://doi.org/10.11896/jsjkx.220500259
[12] 白雪飞, 马亚楠, 王文剑.
基于特征融合的边缘引导乳腺超声图像分割方法
Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion
计算机科学, 2023, 50(3): 199-207. https://doi.org/10.11896/jsjkx.211200294
[13] 刘航, 普园媛, 吕大华, 赵征鹏, 徐丹, 钱文华.
极化自注意力约束颜色溢出的图像自动上色
Polarized Self-attention Constrains Color Overflow in Automatic Coloring of Image
计算机科学, 2023, 50(3): 208-215. https://doi.org/10.11896/jsjkx.220100149
[14] 陈亮, 王璐, 李生春, 刘昌宏.
基于深度学习的可视化仪表板生成技术研究
Study on Visual Dashboard Generation Technology Based on Deep Learning
计算机科学, 2023, 50(3): 238-245. https://doi.org/10.11896/jsjkx.230100064
[15] 张译, 吴秦.
特征增强损失与前景注意力人群计数网络
Crowd Counting Network Based on Feature Enhancement Loss and Foreground Attention
计算机科学, 2023, 50(3): 246-253. https://doi.org/10.11896/jsjkx.220100219
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!