计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220600230-9.doi: 10.11896/jsjkx.220600230
张涛, 程毅飞, 孙欣煦
ZHANG Tao, CHENG Yifei, SUN Xinxu
摘要: 图注意力网络(Graph Attention Network,GAT)是一种重要的图神经网络,在分类任务中有着广泛的应用。但是当图中邻域节点受到干扰时,模型分类准确度会受影响而降低。对此,提出一种基于因果推断的图注意力网络(Causal Graph Attention Network,C-GAT)以提升网络的鲁棒性。该模型首先计算目标节点的邻域与其标签之间的因果权重,并以此对邻域进行因果采样;然后计算采样后邻域与目标节点之间的注意力系数;最后根据注意力系数对邻域信息进行加权聚合,获得目标节点的嵌入特征。在Cora,Pubmed和Citeseer数据集上的实验结果表明,在无扰动的情况下,C-GAT的分类性能与经典模型持平;在有扰动的情况下,相比于经典模型,C-GAT的分类准确度至少提升了6%,在鲁棒性和时间成本上有着较好的平衡。
中图分类号:
[1]VELIKOVI P,CUCURULL G,CASANOVA A,et al.GraphAttention Networks[C]//The 6th International Conference on Learning Representations.2018:1-12. [2]TAN Y,WANG J,ZHANG C.Review of Text ClassificationMethods Based on Graph Convolutional Network[J].Computer Science,2022,49(8):205-216. [3]XU S J,LIU Q Y,SHI Y,et al.Person Re-Identification Based on Diversified Local Attention Network[J].Journal of Electroni-cs & Information Technology,2022,44(1):211-220. [4]JUNG J,HEO H S,YU H J,et al.Graph Attention Networks for Speaker Verification[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Ontario:IEEE,2021:6149-6153. [5]HAN H,WU Y H,QIN X Y.An Interactive Graph AttentionNetworks Model for Aspect-level Sentiment Analysis[J].Journal of Electronics & Information Technology,2021,43(11):3282-3290. [6]ZHANG J,LI M X,GAO K S,et al.Word and Graph Attention Networks for Semi-Supervised Classification[J].Knowledge and Information Systems,2021,63:2841-2859. [7]CAI W W,WEI Z G.Remote Sensing Image Classification Based on a Cross-Attention Mechanism and Graph Convolution[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5. [8]ZHOU H,YANG Y Z,LUO T J,et al.A Unified Deep Sparse Graph Attention Network for Scene Graph Generation[J].Pattern Recognition,2022,123:108367. [9]YANG Y D,WANG X C,SONG M L,et al.SPAGAN:Shortest Path Graph Attention Network[C]//International Joint Confe-rence on Artificial Intelligence.2019:4099-4105. [10]ZHOU A Z,LI Y F.Structural Attention Network for Graph[J].Applied Intelligence,2021,51(8):6255-6264. [11]BAI J,DING B X,XIAO Z,et al,Hyperspectral Image Classification Based on Deep Attention Graph Convolutional Network[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-16. [12]GU W W,GAO F,LOU X D,et al.Discovering Latent Node Information by Graph Attention Network[J].Scientific Reports,2021,11(1):6979. [13]ZHANG K,ZHU Y,WANG J,et al.Adaptive Structural Fin-gerprints for Graph Attention Networks[C]//The 8th International Conference on Learning Representations.2020. [14]YANG L,LI W X,GUO Y F,et al.Graph-CAT:Graph Co-Attention Networks Via Local and Global Attribute Augmentations[J].Future Generation Computer Systems,2021,118:170-179. [15]XIE Y,ZHANG Y Q,GONG M G,et al.Multi-View Graph Attention Networks[J].Neural Networks,2020,132:180-189. [16]ZHANG Z C,LI M,LIN X,et al.Multistep Speed Prediction on Traffic Networks:A Deep Learning Approach ConsideringSpatio-Temporal Dependencies[J].Transportation Research Part C:Emerging Technologies,2019,105:297-322. [17]JI C J,WANG R X,ZHU R X,et al.Hop-Aware SupervisionGraph Attention Networks for Sparsely Labeled Graphs[J/OL].https://arxiv.org/abs/2004.04333. [18]ZHANG H M,XU M.Graph Neural Networks with MultipleKernel Ensemble Attention[J].Knowledge-Based Systems,2021,229:107299. [19]BAI S,ZHANG F H,TORR P H S.Hypergraph Convolution and Hypergraph Attention[J].Pattern Recognition,2021,110:107637. [20]WANG Z H,SHEN H W,CAO Q,et al.Survey on Graph Classification[J].Journal of Software,2022,33(1):171-192. [21]FENG W Z,ZHANG J,DONG Y X,et al.Graph Random Neural Networks for Semi-supervised Learning on Graphs[C]//Advances in Neural Information Processing Systems,2020,33:22092-22103. [22]JUDEA P.The Seven Tools of Causal Inference with Reflections on Machine Learning[J].Communications of the ACM,2019,62(3):54-60. [23]JUDEA P.Causal Inference[M].Causality:Objectives and Assessment,2010:39-58. [24]SCHOLKOPF B,LOCATELLO F,BAUER S,et al.TowardCausal Representation Learning[J].Proceedings of the IEEE,2021,109(5):612-634. [25]RICHENS J G,LEE C M,JOHRI S.Improving the Accuracy of Medical Diagnosis with Causal Machine Learning[J].Nature Communications,2020,11:47-54. [26]LITTLE M A,BADAWY R.Causal Bootstrapping[J/OL].https://arxiv.org/abs/1910.09648. [27]LIU L,WANG S,HU B,et al.Learning structures of interval-based Bayesian networks in probabilistic generative model for human complex activity recognition[J].Pattern Recognition,2018,81:545-561 [28]ZHANG T,LIU M Q,LIU W Y.The Causality Research Between Syndrome Elements by Attribute Topology[J].Computational and Mathematical Methods in Medicine,2018,2018:1-12. [29]KINGMA D P,BA J L.Adam:A Method for Stochastic Optimization[C]//ICIR 2015.2015. [30]KIPF T N,WELLING M.Semi-supervised Classification withGraph Convolutional Networks[C]//International Conference on Learning Representations.2017. [31]HAMILTON W L,YING R,LESKOVEC J.Inductive Representation Learning on Large Graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [32]XIE T,WANG B,JAY K C C.GraphHop:An Enhanced Label Propagation Method for Node Classification[J/OL].https://arxiv.org/abs/2101.02326v1. |
|