计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 243-250.doi: 10.11896/jsjkx.220600264

• 计算机网络 • 上一篇    下一篇

基于EMPC-BCGRU的云虚拟机CPU负载分析预测

谢同磊, 邓莉, 尤文龙, 李锐龙   

  1. 武汉科技大学计算机科学与技术学院 武汉 430065 智能信息处理与实时工业系统湖北省重点实验室 武汉 430065
  • 收稿日期:2022-06-29 修回日期:2023-02-28 出版日期:2023-08-15 发布日期:2023-08-02
  • 通讯作者: 邓莉(dengli@wust.edu.cn )
  • 作者简介:(1139328853@qq.com)
  • 基金资助:
    新一代信息技术创新项目(2020ITA01005)

Analysis and Prediction of Cloud VM CPU Load Based on EMPC-BCGRU

XIE Tonglei, DENG Li, YOU Wenlong, LI Ruilong   

  1. College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System,Wuhan 430065,China
  • Received:2022-06-29 Revised:2023-02-28 Online:2023-08-15 Published:2023-08-02
  • About author:XIE Tonglei,born in 1997,postgra-duate.His main research interests include cloud computing,data analysis and deep learning.
    DENG Li,born in 1972,Ph.D,associate professor,master supervisor,is a member of China Computer Federation.Her main research interests include cloud computing and distributed computing.
  • Supported by:
    New Generation Information Technology Innovation Project(2020ITA01005).

摘要: 云平台资源预测对于云资源管理和节能具有非常重要的意义。云虚拟机技术是云平台为了充分利用物理资源而实施的一种虚拟化手段,但是有效的云虚拟机负载预测仍具有挑战性,因为云虚拟机负载具有周期性和非周期性的变化模式以及突变的负载峰值,云虚拟机负载受到用户随机提交作业的影响。为了准确分析云虚拟机负载的变化模式,提升云虚拟机CPU负载预测性能,提出了一种基于分解-预测的云虚拟机负载预测方法。通过经验模态分解和主成分分析的云虚拟机负载模式分解,得到不同尺度的特征波动序列;预测模型的卷积层能够充分提取分解后的特征,并通过双向门控循环神经网络双向学习序列的前向和后向依赖关系,提高了预测模型学习云虚拟机负载变化模式的能力。最后,在真实云环境微软Azure 产生的 2019 VM数据集上进行单步和多步预测实验,验证了所提预测方法的有效性。

关键词: 云虚拟机, 分解模式, 本征模函数, 负载预测, 神经网络模型

Abstract: Cloud platform resource prediction is of great significance for resource management and energy saving.Cloud VM technology is a virtualization method implemented by the cloud to make full use of physical resources,but effective cloud VM load prediction is still challenging,because the cloud VM load has periodic and aperiodic change patterns and sudden load peaks,and the cloud VM load is affected by the random submission of jobs by users.In order to accurately analyze the change mode of VM load and improve the performance of VM CPU load prediction,a cloud VM load prediction method based on decomposition-prediction is proposed.Through EMD and PCA of cloud VM load mode decomposition,the characteristic fluctuation sequences of different time scales are obtained.The convolution layer of the prediction model can fully extract the decomposed features,and learn the forward and backward dependencies of the sequence through the bidirectional gated cyclic neural network,which improves the ability of the prediction model to learn the load change mode of the VM.Finally,single-step and multi-step prediction experiments are performed on the 2019 VM data sets generated by Microsoft Azure in the real cloud environment,which verifies the effectiveness of the prediction method.

Key words: Cloud VM, Decomposition mode, Intrinsic mode function, Load prediction, Neural network model

中图分类号: 

  • TP391
[1]CORTEZ E,BONDE A,MUZIO A,et al.Resource central:Un-derstanding and predicting workloads for improved resource management in large cloud platforms[C]//Proceedings of the 26th Symposium on Operating Systems Principles.2017:153-167.
[2]FAN Z W,HUANG P J,HUANG P S,et al.A feature generation framework for google trace analysis[C]//Proceedings of the 2015 International Conference on Machine Learning and Cybernetics(ICMLC).IEEE,2015,1:229-234.
[3]LIAN J D,LIU H L,XIE H B,et al.Hierarchical load balancing algorithm based on prediction mechanism [J].Computer Engineering and Applications,2015,51(11):67-71,98.
[4]ABUBAKAR A,BARBHUIYA S,KILPATRICK P,et al.Fast analysis and prediction in large scale virtual machines resource utilisation[C]//Proceedings of theInternational Conference on Cloud Computing and Services Science(CLOSER).2020:115-126.
[5]CHEN S,SHEN Y,ZHU Y.Modeling conceptual characteristics of virtual machines for CPU utilization prediction[C]//Procee-dings of the International Conference on Conceptual Modeling.Cham:Springer,2018:319-333.
[6]WANG J,WANG Z,LI J,et al.Multilevel wavelet decomposition network for interpretable time series analysis[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2437-2446.
[7]DI S,KONDO D,CIRNE W.Google hostload prediction basedon bayesian model with optimized feature combination[J].Journal of Parallel and Distributed Computing,2014,74(1):1820-1832.
[8]QIAN S P,YU Y,ZHAI T Y,et al.Research on online prediction model of host load based on deep learning[J].Computer Engineering,2021,47 (9):84-89.
[9]SONG B,YU Y,ZHOU Y,et al.Host load prediction with longshort-term memory in cloud computing[J].The Journal of Supercomputing,2018,74(12):6554-6568.
[10]CHEN Z,HU J,MIN G,et al.Towards accurate prediction for high-dimensional and highly-variable cloud workloads with deep learning[J].IEEE Transactions on Parallel and Distributed Systems,2019,31(4):923-934.
[11]KHODAVERDIAN Z,SADR H,EDALATPANAH S A,et al.Combination of convolutional neural network and gated recurrent unit for energy aware resource allocation[J].arXiv:2106.12178,2021.
[12]KARIM M E,MASWOOD M M S,DAS S,et al.BHyPreC:A novel Bi-LSTM based hybrid recurrent neural network model to predict the CPU workload of cloud virtual machine[J].IEEE Access,2021,9:131476-131495.
[13]SHUVO M N H,MASWOOD M M S,ALHARBI A G.Lsru:A novel deep learning based hybrid method to predict the workload of virtual machines in cloud data center[C]//2020 IEEE Region 10 Symposium(TENSYMP).IEEE,2020:1604-1607.
[14]KUMBHARE A G,AZIMI R,MANOUSAKIS I,et al.{Prediction-Based} Power oversubscription in cloud platforms[C]//2021 USENIX Annual Technical Conference(USENIX ATC 21).2021:473-487.
[15]ALSALAH A,HOLLOWAY D,MOUSAVI M,et al.Identification of wave impacts and separation of responses using EMD[J].Mechanical Systems and Signal Processing,2021,151:107385.
[16]LUO Y X,LI Z H,LIANG X,et al.Multifractal detrended fluctuation analysis method for nonstationary time series based on EMD-LS[J].Acta Electronic Sinica,2021,49(12):2323-2329.
[17]YAO L S,LIU D,PEI Z F,et al.Real-time network traffic prediction model based on EMD clustering [J].Computer Science,2020,47(S2):316-320.
[18]DENG A,JIN M.Time-scale feature extraction method based on EMD and its application in short-term power load forecasting [J].Application Research of Computers,2018,35(10):2952-2955.
[19]LIANG R,CHANG X,JIA P,et al.Mine gas concentration forecasting model based on an optimized BiGRU network[J].ACS Omega,2020,5(44):28579-28586.
[20]ZHU J C,DENG L,YAN M,et al.Research on cloud platform host resource load forecast analysis[J].Journal of Chinese Computer Systems,2021,42(12):2538-2544.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!