计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 202-209.doi: 10.11896/jsjkx.220800086
陈国军, 岳雪燕, 朱燕宁, 付云鹏
CHEN Guojun, YUE Xueyan, ZHU Yanning, FU Yunpeng
摘要: 由于高分辨率遥感图像中的建筑物尺寸多样,且背景复杂,因此在对遥感图像中的建筑物进行提取时,往往存在细节丢失、边缘模糊等问题,从而影响模型的分割精度。为了解决这些问题,提出了具有空间和语义信息的双分支架构网络B2Net。首先,在语义信息分支上建立交叉特征融合模块,充分捕获上下文信息,以聚合更多的多尺度语义特征;其次,在空间信息分支上将空洞卷积和深度可分离卷积进行组合,提取图像的多尺度空间特征,并通过优化膨胀率扩大网络的感受野;最后,构建内容感知注意力模块,对图像中的高频和低频内容进行自适应选择,以达到细化建筑物分割边缘的效果。在两个建筑物数据集上对B2Net进行训练与测试。在WHU数据集上,与基线模型相比,B2Net在精度、召回率、F1分数以及交并比上皆达到了最佳效果,分别为98.60%,99.40%,99.30%,88.50%;在Massachusetts建筑物数据集上,4个指标比BiSeNet分别提高了0.9%,1.9%,1.7%,2.2%。实验结果证明,B2Net可以更好地捕获空间细节信息和高级语义信息,提高了复杂背景下的建筑物进行分割精度,满足了对建筑物快速提取的需求。
中图分类号:
[1]ZOU W,JING W,CHEN G,et al.A survey of big data analytics for smart forestry[J].IEEE Access,2019,7:46621-46636. [2]HUERTAS A,NEVATIA R.Detecting buildings in aerialimages[J].Computer Vision,Graphics,and Image Processing,1988,41(2):131-152. [3]PENG J,LIU Y C.Model and context-driven building extraction in dense urban aerial images[J].International Journal of Remote Sensing,2005,26(7):1289-1307. [4]LEVITT S,AGHDASI F.An investigation into the use of wavelets and scaling for the extraction of buildings in aerial images[C]//Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG'98(Cat.No.98EX214).IEEE,1998:133-138. [5]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [6]TURLAPATY A,GOKARAJU B,DU Q,et al.A hybrid ap-proach for building extraction from spaceborne multi-angular optical imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(1):89-100. [7]SUMER E,TURKER M.An adaptive fuzzy-genetic algorithmapproach for building detection using high-resolution satellite images[J].Computers,Environment and Urban Systems,2013,39:48-62. [8]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [9]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Compu-ter-assisted Intervention.Cham:Springer,2015:234-241. [10]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected crfs[J].arXiv:1412.7062,2014. [11]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [12]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [13]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [14]LI L,LIANG J,WENG M,et al.A multiple-feature reuse network to extract buildings from remote sensing imagery[J].Remote Sensing,2018,10(9):1350-1367. [15]CHAURASIA A,CULURCIELLO E.Linknet:Exploiting en-coder representations for efficient semantic segmentation[C]//2017 IEEE Visual Communications and Image Processing(VCIP).IEEE,2017:1-4. [16]ZHONG Z,LIN Z Q,BIDART R,et al.Squeeze-and-attentionnetworks for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13065-13074. [17]CAO J,CHEN Q,GUO J,et al.Attention-guided context feature pyramid network for object detection[J].arXiv:2005.11475,2020. [18]DAI Y,GIESEKE F,OEHMCKE S,et al.Attentional featurefusion[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:3560-3569. [19]PARK J,WOO S,LEE J Y,et al.Bam:Bottleneck attention module[J].arXiv:1807.06514,2018. [20]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [21]ROY A G,NAVAB N,WACHINGER C.Concurrent spatial and channel ‘squeeze & excitation'in fully convolutional networks[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Cham:Springer,2018:421-429. [22]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. [23]LI C L,HUANG F H,HU W,et al.Building Extraction from High-Resolution Remote Sensing Image based on Res_AttentionUnet[J].Journal of Geo-Information Science,2021,23(12):2232-2243. [24]XU C Y,FAN S S,ZHU H.Semantic Segmentation of Remote Sensing lmages Using The Channel Domain Attention Mechanism Deeplabv3+ Algorithm [J].Control Engineering,2023,30(2):368-375. [25]YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:325-341. [26]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [27]CHOLLET F.Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1251-1258. [28]DU S J,DU S H,LIU B,et al.Incorporating DeepLabv3+ and object-based image analysis for semantic segmentation of very high resolution remote sensing images[J].International Journal of Digital Earth,2021,14(3):357-378. [29]ZHANG L,DONG R,YUAN S,et al.Making low-resolutionsatellite images reborn:a deep learning approach for super-resolution building extraction[J].Remote Sensing,2021,13(15):2872. [30]ZHANG R.Making convolutional networks shift-invariant again[C]//International Conference on Machine Learning.PMLR,2019:7324-7334. [31]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [32]JI S P,WEI S Q.Building extraction via convolutional neural networks from an open remote sensing building dataset[J].Journal of Geomatics,2019,48(4):448-459. [33]MNIH V.Machine learning for aerial image labeling[D].University of Toronto(Canada),2013. [34]KANG W,XIANG Y,WANG F,et al.EU-Net:An efficientfully convolutional network for building extraction from optical remote sensing images[J].Remote Sensing,2019,11(23):2813. [35]WANG J,SUN K,CHENG T,et al.Deep high-resolution representation learning for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(10):3349-3364. [36]ZHAO H,QI X,SHEN X,et al.Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:405-420. |
|