计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 103-114.doi: 10.11896/jsjkx.220800112
王慧妍1, 于明鹤2, 于戈1
WANG Huiyan1, YU Minghe2, YU Ge1
摘要: 万物依存而在,现实世界中的实体之间存在着各种不同的关联关系,如人与人之间的关系可以构成社交网络,学者通过共同发表论文、引用文献构成引文网络。同质网络将节点和边抽象为单一类型,但是这会造成大量的信息丢失。为了更大程度地保证信息的完整性和丰富性,有研究者提出了异质信息网络的概念,即包含多种类型节点和边的网络模式。将异质信息网络中的拓扑结构和语义信息嵌入到低维向量空间中,下游任务能够利用异质信息网络中的丰富信息进行机器学习或数据挖掘任务。文中总结了近年来基于深度学习模型的异质信息网络表示学习方法的研究成果,同时聚焦两类关键问题——异质信息网络语义自动提取和动态异质信息网络的表示学习方法,列举了异质信息网络表示学习新的应用场景,并展望了异质信息网络的未来发展趋势。
中图分类号:
[1]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.2013:3111-3119. [2]HAMILTON W L,YING R,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NeurIPS).2017:1025-1035. [3]WANG D,CUI P,ZHU W.Structural Deep Network Embed-ding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1225-1234. [4]ZENG X,ZHU S,LU W,et al.Target identification amongknown drugs by deep learning from heterogeneous networks[J].Chemical Science,2020,11(7):1775-1797. [5]ATHANASIOS T,STJIN V D,ANTON J E,et al.Network visualization and analysis of gene expression data using biolayout express(3D)[J].Nature Protocols,2009,4(10):1535-1550. [6]YANG X,WANG W,MA J L,et al.BioNet:a large-scale and heterogeneous biological network model for interaction prediction with graph convolution[J].Briefings in Bioinformatics,2022,23(1):bbab491. [7]GAO Y L,LI X Y,HAO P,et al.HinCTI:A Cyber Threat Intelligence Modeling and Identification System Based on Heterogeneous Information Network[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(2):708-722. [8]HOU S,YE Y,SONG Y,et al.HinDroid:An Intelligent Android Malware Detection System Based on Structured Heterogeneous Information Network[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:1507-1515. [9]WU S Q,DONG Y H,WANG X,et al.Learning attribute net-work algorithm based on high-order similarity[J].Telecommunication Science,2020,36(12):13. [10]ZHANG J,SHI X,ZHAO S,et al.STAR-GCN:stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Joint Confe-rence on Artificial Intelligence.2019:4264-4270. [11]GONG J,WANG S,WANG J,et al.Attentional Graph Convolutional Networks for Knowledge Concept Recommendation in MOOCs in a Heterogeneous View[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:79-88. [12]CHEN C,MA W,ZHANG M,et al.Graph HeterogeneousMulti-Relational Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:3959-3966. [13]LU Y,FANG Y,SHI C.Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation[C]//Procee-dings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:1563-1573. [14]WANG X,LU Y,SHI C,et al.Dynamic Heterogeneous Information Network Embedding with Meta-path based Proximity[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(3):1117-1132. [15]ZHANG Y,XIONG Y,KONG X,et al.Deep Collective Classifi-cation in Heterogeneous Information Networks[C]//Procee-dings of the 2018 World Wide Web Conference.2018:399-408. [16]LIU M,LIU J,CHEN Y,et al.AHNG:Representation Learning on Attributed Heterogeneous Network[J].Information Fusion,2019,50:221-230. [17]XU S,YANG C,SHI C,et al.Topic-aware HeterogeneousGraph Neural Network for Link Prediction[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:2261-2270. [18]WANG H,ZHANG F,HOU M,et al.SHINE:Signed Heterogeneous Information Network Embedding for Sentiment Link Prediction[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.2018:592-600. [19]SHI C,WANG R J,WANG X.Survey on Heterogeneous Information Networks[J].Journal of Software,2022,33(2):598-621. [20]ZHOU L H,WANG J L,WANG L Z.HeterogeneousInformationNetworkRepresentationLearning:ASurvey[J].Chinese Journal of Computers,2022,45(1):160-189. [21]WANG X,BO D,SHI C,et al.A Survey on HeterogeneousGraph Embedding:Methods,Techniques,Applications and Sources[J].IEEE Transactions on Big Data,2023,9(2):415-436. [22]LIU J W,SHI C,YANG C,et al.Heterogeneous Information Network based Recommender Systems:a survey[J].Journal of Cyber Security,2021,6(5):1-16. [23]SUN Y,HAN J.Mining heterogeneous information networks:a structural analysis approach[J].SIGKDD Explor Newsl,2013,14(2):20-28. [24]HUANG Z,ZHENG Y,CHENG R,et al.Meta Structure:Computing Relevance in Large Heterogeneous Information Networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1595-1604. [25]ZHANG Z,HUANG J,TAN Q,et al.CMG2Vec:A composite meta-graph based heterogeneous information network embedding approach[J].Knowledge-Based Systems,2021,216:106661.1-106661.14. [26]PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:online lear-ning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2014:701-710. [27]JIANG H,SONG Y,WANG C,et al.Semi-supervised learning over heterogeneous information networks by ensemble of meta-graph guided random walks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:1944-1950. [28]GAO X,CHEN J,ZHAN Z,et al.Learning heterogeneous information network embeddings via relational triplet network[J].Neurocomputing,2020,412:31-41. [29]XU L,WEI X,CAO J,et al.Embedding of Embedding(EOE):Joint Embedding for Coupled Heterogeneous Networks[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.2017:741-749. [30]TANG J,QU M,MEI Q.PTE:Predictive Text Embeddingthrough Large-scale Heterogeneous Text Networks[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2015:1165-1174. [31]SCARSELLI F,GORI M,TSOI A C,et al.The Graph Neural Network Model[J].IEEE Transactions on Neural Networks,2009,20(1):61-80. [32]LI X,WEN L,QIAN C,et al.GAHNE:Graph-Aggregated He-terogeneous Network Embedding[C]//proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence(ICTAI).2020:1012-1019. [33]ZHU Z,FAN X,CHU X,et al.HGCN:A Heterogeneous Graph Convolutional Network-Based Deep Learning Model Toward Collective Classification[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:1161-1171. [34]YAN D,XIE W,ZHANG Y.Heterogeneous information net-work-based interest composition with graph neural network for recommendation[J].Applied Intelligence,2022,52(10):11199-11213. [35]ZHAO J,WANG X,SHI C,et al.Heterogeneous Graph Structure Learning for Graph Neural Networks[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence.2021,35:4697-4705. [36]QIN X,SHEIKH N,REINWALD B,et al.Relation-awareGraph Attention Model with Adaptive Self-adversarial Training[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence.2021:9368-9376. [37]WANG Y,DUAN Z,LIAO B,et al.Heterogeneous Attributed Network Embedding with Graph Convolutional Networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:10061-10062. [38]ZHAO J,LIU X,YAN Q,et al.Multi-attributed heterogeneous graph convolutional network for bot detection[J].Information Sciences,2020,537:380-393. [39]FU X,ZHANG J,MENG Z,et al.MAGNN:Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding[C]//Proceedings of The Web Conference(WWW).2020:2331-2341. [40]TANG S,LEI Y,WANG S.DisenHAN:Disentangled Heterogeneous Graph Attention Network for Recommendation[C]//The 29th ACM International Conference on Information and Knowledge Management(CIKM '20).2020. [41]CEN Y,ZOU X,ZHANG J,et al.Representation Learning for Attributed Multiplex Heterogeneous Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & amp;Data Mining.2019:1358-1368. [42]WANG X,LIU N,HAN H,et al.Self-supervised Heteroge-neous Graph Neural Network with Co-contrastive Learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Know-ledge Discovery & Data Mining.2021:1726-1736. [43]WANG H W,WANG J,WANG J L,et al.GraphGAN:GraphRepresentation Learning with Generative Adversarial Nets[C]//Proceedings of the AAAI Conferenceon Artificial Intelligence.2018:2508-2515. [44]HONG H,LI X,WANG M.GANE:A Generative Adversarial Network Embedding[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(7):2325-2335. [45]ZHANG C,WANG Y,ZHU L,et al.Multi-Graph Heteroge-neous Interaction Fusion for Social Recommendation[J].ACM Transactions Information Systems,2022,40(2):28:21-28:26. [46]WANG R J,SHI C,ZHAO T Y,et al.Heterogeneous Information Network Embedding with Adversarial Disentangler[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(2):1581-1593. [47]HOU S,FAN Y,JU M,et al.Disentangled RepresentationLearning in Heterogeneous Information Network for Large-scale Android Malware Detection in the COVID-19 Era and Beyond[C]//the 35th AAAI Conference on Artificial Intelligence.2021:7754-7761. [48]ZHAO K,BAI T,WU B,et al.Deep Adversarial Completion for Sparse Heterogeneous Information Network Embedding[C]//Proceedings of The Web Conference(WWW).2020:508-518. [49]HINTON G E,ZEMEL R S.Autoencoders,minimum description length and Helmholtz free energy[C]//Proceedings of the 6th International Conference on Neural Information Processing Systems.1993:3-10. [50]YU B,HU J,XIE Y,et al.Rich heterogeneous information preserving network representation learning[J].Pattern Recognit,2020,108:107564. [51]ZHANG C,WANG G,YU B,et al.Proximity-aware heterogeneous information network embedding[J].Knowledge-Based Systems,2020,193:105468.1-105468.13. [52]ZHU Z,FAN X,CHU X,et al.LRHNE:A Latent-Relation Enhanced Embedding Method for Heterogeneous Information Networks[C]//Proceedings of the 29th ACM International Confe-rence on Information & Knowledge Management.2020:1923-1932. [53]ZHENG J,MA Q,GU H,et al.Multi-view Denoising GraphAuto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:2338-2348. [54]XIE F,ZHENG A,CHEN L,et al.Attentive Meta-graph Embedding for item Recommendation in heterogeneous information networks-ScienceDirect[J].Knowledge-Based Systems,2020,211:106524.1-106524.13. [55]ZHANG X,CHEN L.mSHINE:A Multiple-meta-paths Simultaneous Learning Framework for Heterogeneous Information Network Embedding[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(7):3391-3404. [56]YANG Y,GUAN Z,LI J,et al.Interpretable and Efficient Hete-rogeneous Graph Convolutional Network[J].IEEE Transactions on Knowledge and Data Engineering,2023,35(2):1637-1650. [57]CHANG Y,CHEN C,HU W,et al.Megnn:Meta-path extracted graph neural network for heterogeneous graph representation learning[J].Knowledge-Based Systems,2022,235:107611.1-107611.11. [58]HWANG D,PARK J,KWON S,et al.Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs[C]//Advances in Neural Information Processing Systems(NeurIPS).2020:10294-10305. [59]CHAIRATANAKUL N,LIU X,MURATA T.PGRA:Projected graph relation-feature attention network for heterogeneous information network embedding[J].Information Sciences,2021,570(1):769-794. [60]HONG H,GUO H,LIN Y,et al.An Attention-based GraphNeural Network for Heterogeneous Structural Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:4132-4139. [61]PENG H,YANG R,WANG Z,et al.LIME:Low-Cost and Incremental Learning for Dynamic Heterogeneous Information Networks[J].IEEE Transactions on Computers,2022,71(3):628-642. [62]JIANG S,KOCH B,SUN Y.HINTS:Citation Time Series Prediction for New Publications via Dynamic Heterogeneous Information Network Embedding[C]//Proceedings of the Web Conference(WWW).2021:3158-3167. [63]ZHANG Z,HUANG J,TAN Q.Multi-view Dynamic Heterogeneous Information Network Embedding[J].The Computer Journal,2022,65(8):2016-2033. [64]XIE Y,OU Z,CHEN L,et al.Learning and Updating Node Embedding on Dynamic Heterogeneous Information Network[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining(WSDM).2021:184-192. [65]HUANG H,SHI R,ZHOU W,et al.Temporal Heterogeneous Information Network Embedding[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.2021:1470-1476. [66]HONG H,LIN Y,YANG X,et al.HetETA:Heterogeneous Information Network Embedding for Estimating Time of Arrival[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2444-2454. [67]LUO W,ZHANG H,YANG X,et al.Dynamic Heterogeneous Graph Neural Network for Real-time Event Prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:3213-3223. [68]GUO Z W,TANG L G,GUO T,et al.Deep Graph neural network-based spammer detection under the perspective of heterogeneous cyberspace[J].Future Generation Computer Systems,2021,117:205-218. [69]SUN X,YIN H,LIU B,et al.Heterogeneous Hypergraph Embedding for Graph Classification[C]//proceedings of the Proceedings of the 14th ACM International Conference on Web Search and Data Mining(WSDM).2021:725-733. [70]SHEHNEPOOR S,TOGNERI R,LIU W,et al.HIN-RNN:A Graph Representation Learning Neural Network for Fraudster Group Detection With No Handcrafted Features[J].arXiv:2015.11602,2021. [71]LIU Z,DOU Y,YU P S,et al.Alleviating the Inconsistency Problem of Applying Graph Neural Network to Fraud Detection[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:1569-1572. [72]ZHONG Q,LIU Y,AO X,et al.Financial Defaulter Detection on Online Credit Payment via Multi-view Attributed Heterogeneous Information Network[C]//Proceedings of The Web Conference(WWW).2020:785-795. [73]HU B,ZHANG Z,SHI C,et al.Cash-Out User Detection Based on Attributed Heterogeneous Information Network with a Hie-rarchical Attention Mechanism[C]//Proceedings of the THIRTY-THIRD AAAI Conference on Artificial Intelligence.2019:946-953. [74]JIA R,CAO Y,TANG H,et al.Neural Extractive Summarization with Hierarchical Attentive Heterogeneous Graph Network[C]//proceedings of the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:3622-3631. [75]XU R,LIU T,LI L,et al.Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker[C]//Annual Meeting of the Association for Computational Linguistics.2021:3533-3546. [76]WU Y,ZHAO S,GUO R.A novel community answer matching approach based on phrase fusion heterogeneous information network[J].Information Processing & Management,2021,58(1):102408. [77]SUN Q,PENG H,LI J,et al.Pairwise Learning for NameDisambiguation in Large-Scale Heterogeneous Academic Networks[C]//Proceedings of the 2020 IEEE International Conference on Data Mining(ICDM).2020:511-520. [78]WANG H,WANG R,WEN C,et al.Author Name Disambi-guation on Heterogeneous Information Network with AdversarialRepresentation Learning[C]//THIRTY-FOURTH AAAI Conference on Artificial Intelligence.2020:238-235. [79]TANG J,LOU T,KLEINBERG J,et al.Transfer Learning to Infer Social Ties across Heterogeneous Networks[J].ACM Transactions on Information System,2016,34(2):1-43. |
[1] | 陈冲, 陈杰, 张慧, 蔡磊, 薛亚茹. 深度学习可解释性综述 Review on Interpretability of Deep Learning 计算机科学, 2023, 50(5): 52-63. https://doi.org/10.11896/jsjkx.221000044 |
[2] | 黄迅迪, 庞雄文. 基于深度学习的智能设备故障诊断研究综述 Review of Intelligent Device Fault Diagnosis Based on Deep Learning 计算机科学, 2023, 50(5): 93-102. https://doi.org/10.11896/jsjkx.220500197 |
[3] | 贾天豪, 彭力. 残差学习与循环注意力下的SSD目标检测算法 SSD Object Detection Algorithm with Residual Learning and Cyclic Attention 计算机科学, 2023, 50(5): 170-176. https://doi.org/10.11896/jsjkx.220400085 |
[4] | 张雪, 赵晖. 基于多事件语义增强的情感分析 Sentiment Analysis Based on Multi-event Semantic Enhancement 计算机科学, 2023, 50(5): 238-247. https://doi.org/10.11896/jsjkx.220400256 |
[5] | 雪峰豪, 蒋海波, 唐聃. 深度学习在健康医疗中的应用研究综述 Review of Deep Learning Applications in Healthcare 计算机科学, 2023, 50(4): 1-15. https://doi.org/10.11896/jsjkx.220600166 |
[6] | 邵云飞, 宋友, 王宝会. 基于社交网络图节点度的神经网络个性化传播算法研究 Study on Degree of Node Based Personalized Propagation of Neural Predictions forSocial Networks 计算机科学, 2023, 50(4): 16-21. https://doi.org/10.11896/jsjkx.220300274 |
[7] | 韩雪明, 贾彩燕, 李轩涯, 张鹏飞. 传播树结构结点及路径双注意力谣言检测模型 Dual-attention Network Model on Propagation Tree Structures for Rumor Detection 计算机科学, 2023, 50(4): 22-31. https://doi.org/10.11896/jsjkx.220200037 |
[8] | 申秋慧, 张宏军, 徐有为, 王航, 程恺. 知识图谱嵌入模型中的损失函数研究综述 Comprehensive Survey of Loss Functions in Knowledge Graph Embedding Models 计算机科学, 2023, 50(4): 149-158. https://doi.org/10.11896/jsjkx.211200175 |
[9] | 栗书敬, 黄增峰. 混合曲率空间用于多关系异构知识图谱链接补全 Mixed-curve for Link Completion of Multi-relational Heterogeneous Knowledge Graphs 计算机科学, 2023, 50(4): 172-180. https://doi.org/10.11896/jsjkx.220500135 |
[10] | 王娅丽, 张凡, 余增, 李天瑞. 基于交互注意力和图卷积网络的方面级情感分析 Aspect-level Sentiment Classification Based on Interactive Attention and Graph Convolutional Network 计算机科学, 2023, 50(4): 196-203. https://doi.org/10.11896/jsjkx.220100105 |
[11] | 刘泽润, 郑红, 邱俊杰. 基于抽象语法树裁剪的智能合约漏洞检测研究 Smart Contract Vulnerability Detection Based on Abstract Syntax Tree Pruning 计算机科学, 2023, 50(4): 317-322. https://doi.org/10.11896/jsjkx.220300063 |
[12] | 董程昱, 吕明琪, 陈铁明, 朱添田. 基于异构溯源图学习的APT攻击检测方法 Heterogeneous Provenance Graph Learning Model Based APT Detection 计算机科学, 2023, 50(4): 359-368. https://doi.org/10.11896/jsjkx.220300040 |
[13] | 陈富强, 寇嘉敏, 苏利敏, 李克. 基于图神经网络的多信息优化实体对齐模型 Multi-information Optimized Entity Alignment Model Based on Graph Neural Network 计算机科学, 2023, 50(3): 34-41. https://doi.org/10.11896/jsjkx.220700242 |
[14] | 于健, 赵满坤, 高洁, 王聪源, 李亚蓉, 张文彬. 基于高阶和时序特征的图神经网络社会化推荐算法研究 Study on Graph Neural Networks Social Recommendation Based on High-order and Temporal Features 计算机科学, 2023, 50(3): 49-64. https://doi.org/10.11896/jsjkx.220700108 |
[15] | 李志飞, 赵月, 张龑. 基于表示学习的知识图谱推理研究综述 Survey of Knowledge Graph Reasoning Based on Representation Learning 计算机科学, 2023, 50(3): 94-113. https://doi.org/10.11896/jsjkx.220900136 |
|