计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 220800205-8.doi: 10.11896/jsjkx.220800205
靳博文1,2, 王庆梅1,2, 胡承佐1, 魏嘉呈1
JIN Bowen1,2, WANG Qingmei1,2, HU Chengzuo1, WEI Jiacheng1
摘要: 基于会话的推荐系统的研究通常侧重于在使用浅层神经网络的同时通过聚集节点的K跳邻域来对当前会话用户偏好建模,但是此类方法面临着过平滑的问题。为此,提出了一种基于全局特征增强的会话推荐算法(GFE-SR)。首先,该方法在会话图中利用图神经网络和注意力机制获得会话级项目表示。其次,在全局图的特征传播阶段给每个节点的最近邻域按比例赋予权重来限制过平滑问题,通过全局图进行特征表征融合,获得特征增强的全局级项目表示。然后,通过注意力机制聚合两种项目表示对当前会话的用户偏好进行建模,最终输出候选项目的预测概率。在3个基准数据集上的实验表明,该方法的性能优于现有的最佳方法如 GCE-GNN 等,最高可提升5.2%,证明了该方法的有效性。
中图分类号:
[1]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//Procee-dings of the 10th International Conference on World Wide Web.2001:285-295. [2]HIDASI B,KARATZOGLOU A,BALTRUNAS L,et al.Ses-sion-based recommendations with recurrent neural networks[J].arXiv:1511.06939,2015. [3]KANG W C,MCAULEY J.Self-attentive sequential recommen-dation[C]//2018 IEEE International Conference on Data Mi-ning(ICDM).IEEE,2018:197-206. [4]LI J,REN P,CHEN Z,et al.Neural attentive session-basedrecommendation[C]//Proceedings of the 2017 ACM on Confe-rence on Information and Knowledge Management.2017:1419-1428. [5]WANG H,LIU G,LIU A,et al.DMRAN:A Hierarchical Fine-Grained Attention-Based Network for Recommendation[C]//IJCAI.2019:3698-3704. [6]WANG M,REN P,MEI L,et al.A collaborative session-based recommendation approach with parallel memory modules[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:345-354. [7]WANG S,HU L,WANG Y,et al.Modeling multi-purpose sessions for next-item recommendations via mixture-channel purpose routing networks[C]//International Joint Conference on Artificial Intelligence.International Joint Conferences on Artificial Intelligence.2019. [8]LIU Q,ZENG Y,MOKHOSI R,et al.STAMP:short-term attention/memory priority model for session-based recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:1831-1839. [9]LI Y,TARLOW D,BROCKSCHMIDT M,et al.Gated graph sequence neural networks[J].arXiv:1511.05493,2015. [10]WU S,TANG Y,ZHU Y,et al.Session-based recommendation with graph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:346-353. [11]HU C,WANG Q,et al.Complex Structural Information for Session-based Recommendation with Graph Neural Networks[J].Computer Engineering,2022,48(5):82-90. [12]WANG Z,WEI W,CONG G,et al.Global context enhancedgraph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:169-178. [13]DING H.Research on Optimization Algorithm of Graph Convolutional Neural Network[D].Beijing:University of Science and Technology,2022 [14]RENDLE S,FREUDENTHALER C,SCHMIDT-THIEME L.Factorizing personalized markov chains for next-basket recommendation[C]//Proceedings of the 19th International Confe-rence on World Wide Web.2010:811-820. [15]JANNACH D,LUDEWIG M.When recurrent neural networks meet the neighborhood for session-based recommendation[C]//Proceedings of the Eleventh ACM Conference on Recommender Systems.2017:306-310. [16]TAN Y K,XU X,LIU Y.Improved recurrent neural networks for session-based recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:17-22. [17]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706,03762,2017. [18]WANG S,HU L,WANG Y,et al.Sequential recommender systems:challenges,progress and prospects[J].arXiv:2001.04830,2019. [19]WANG C,WANG C,WANG Z,et al.DeepDirect:Learning directions of social ties with edge-based network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(12):2277-2291. [20]WANG Z,YE X,WANG C,et al.Network embedding withcompletely-imbalanced labels[J].IEEE Transactions on Knowledge and Data Engineering,2020,33(11):3634-3647. [21]WANG Z,YE X,WANG C,et al.RSDNE:Exploring relaxed similarity and dissimilarity from completely-imbalanced labels for network embedding[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2018. [22]WANG C,WANG C,WANG Z,et al.Edge2vec:Edge-based social network embedding[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2020,14(4):1-24. [23]WANG Z,WANG J,GUO Y,et al.Zero-shot node classification with decomposed graph prototype network[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:1769-1779. [24]QIU R,LI J,HUANG Z,et al.Rethinking the item order in session-based recommendation with graph neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:579-588. [25]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [26]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//International Conference on Machine Learning.PMLR,2019:6861-6871. [27]ZHU H,KONIUSZ P.Simple spectral graph convolution[C]//International Conference on Learning Representations.2020. [28]WANG Z,WANG C,PEI J,et al.Multiple source detectionwithout knowing the underlying propagation model[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [29]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Drop-out:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958. [30]ZANGERLE E,PICHL M,GASSLER W,et al.# nowplaying music dataset:Extracting listening behavior from twitter[C]//Proceedings of the First International Workshop on Internet-scale Multimedia Management.2014:21-26. |
|