计算机科学 ›› 2023, Vol. 50 ›› Issue (12): 212-220.doi: 10.11896/jsjkx.221000183

• 计算机图形学&多媒体 • 上一篇    下一篇

面向工业图像异常检测的连续密集标准化流模型

张邹铨1, 张辉2, 吴天月1, 陈天才3   

  1. 1 长沙理工大学电气与信息工程学院 长沙 410000
    2 湖南大学机器人学院 长沙 410000
    3 湖南大学电气与信息工程学院 长沙 410000
  • 收稿日期:2022-10-23 修回日期:2023-03-17 出版日期:2023-12-15 发布日期:2023-12-07
  • 通讯作者: 张辉(zhanghuihby@126.com)
  • 作者简介:(zouquan_zhang@163.com)
  • 基金资助:
    国家重点研发计划(2021ZD0114503);国家自然科学基金(61971071,62027810);湖南省杰出青年科学基金(2021JJ10025);湖南省研究生科研创新项目(CX20210797)

Continuous Dense Normalized Flow Model for Anomaly Detection in Industrial Images

ZHANG Zouquan1, ZHANG Hui2, WU Tianyue1, CHEN Tiancai3   

  1. 1 School of Electrical & Information Engineering,Changsha University of Science and Technology,Changsha 410000,China
    2 School of Robotics,Hunan University,Changsha 410000,China
    3 School of Electrical & Information Engineering,Hunan University,Changsha 410000,China
  • Received:2022-10-23 Revised:2023-03-17 Online:2023-12-15 Published:2023-12-07
  • About author:ZHANG Zouquan,born in 1998,master.His main research interests include image processing,deep learning and so on.
    ZHANG Hui,born in 1983,Ph.D,professor.His main research interests include machine vision and sparse representation.
  • Supported by:
    National Key R & D Program of China(2021ZD0114503),National Natural Science Foundation of China(61971071,62027810),National Science Fund for Distinguished Young Scholars of Hunan Province,China(2021JJ10025) and Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210797).

摘要: 工业产品表面异常检测是生产制造中不可或缺的环节。在实际工业生产中,普遍存在异常样本所占比例低且未知异常复杂多变等现象,进而造成在小样本数据集上过拟合、泛化能力不佳等一系列负面影响。近年来,标准化流思想为基于深度学习的工业图像异常检测带来了新途径,但标准化流的固有架构易导致模型表达能力不足。针对上述难点,提出了一种面向工业图像异常检测的连续密集标准化流模型。首先,设计一种基于对比学习的特征提取网络预训练策略,将模拟异常数据和少量真实异常数据加入对比学习任务中,并训练特征骨干网络AlexNet拉近或拉远特定样本间的距离;其次,设计连续密集标准化流模型,采用可逆变换的复合架构来构造密集流模块,增强生成式模型对分布的拟合能力。在MVTec AD和Magnetic Tile Defects以及自制的工业布匹数据集上的实验结果表明,与其他的异常检测模型相比,所提方法在3个数据集上的检测性能达到了最优或次优的水平。

关键词: 工业图像检测, 异常检测, 深度学习, 标准化流, 对比学习

Abstract: Anomaly detection on the surface of industrial products is an indispensable link in manufacturing.In actual industrial production,there are common phenomena such as low proportion of abnormal samples and complex and changeable unknown abnormal,which in turn cause a series of negative effects such as overfitting and poor generalization ability on few-shot datasets.In recent years,the idea of normalized flow has brought a new approach to the field of industrial image anomaly detection based on deep learning,but the inherent architecture of normalized flow easily leads to insufficient model expressiveness.Aiming at the above difficulties,a continuous dense normalized flow model for industrial image anomaly detection is proposed.First,a feature extraction network pre-training strategy based on contrastive learning is designed,which involves simulated abnormal data and a small amount of real abnormal data in the contrastive learning task,and trains the feature backbone network AlexNet to narrow or widen the distance between specific samples.Secondly,a continuous dense normalized flow model is designed,and it uses a composite architecture of reversible transformation to construct a dense flow module to enhance the fitting ability of the generative model to the distribution.The experimental datasets include MVTec AD,Magnetic Tile Defects and self-made industrial cloth datasets.Compared with other anomaly detection models,our method achieves optimal or sub-optimal detection performance on the three datasets,respectively.

Key words: Industrial image detection, Anomaly detection, Deep learning, Normalized flow, Contrastive learning

中图分类号: 

  • TP391
[1]CHALAPATHY R,CHAWLA S.Deep Learning for AnomalyDetection:A Survey[EB/OL].(2019-01-23)[2022-10-10].https://arxiv.org/pdf/1901.03407.pdf.
[2]LV C K,SHEN F,ZHANG Z T,et al.Review of Image Ano-maly Detection[J].Acta Automatica Sinica,2022,48(6):1402-1428.
[3]BERGMANN P,FAUSER M,SATTLEGGER D,et al.MVTec AD-A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:9592-9600.
[4]HUANG Y,QIU C,YUAN K.Surface Defect Saliency of Magnetic Tile[J].The Visual Computer,2020,36(1):85-96.
[5]XU T,TIAN C Y,LIU C H.Deep Learning for AbnormalCrowd Behavior Detection:A Review[J].Computer Science,2021,48(9):125-134.
[6]WANG Y S,YAO H X,SUN X S,et al.Representation Ability Research of Autoencoders in Deep Learning[J].Computer Science,2015,42(9):56-60,65.
[7]BERGMANN P,LÖWE S,FAUSER M,et al.Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders[EB/OL].(2019-02-01)[2022-10-10].https://arxiv.org/pdf/1807.02011.pdf.
[8]YU W Y,ZHANG Y,YAO H M,et al.Visual Inspection ofSurface Defects Based on Lightweight Reconstruction Network[J].Acta Automatica Sinica,2022,48(9):2175-2186.
[9]ZAVRTANIK V,KRISTAN M,SKOČAJ D.DRAEM:A Discriminatively Trained Reconstruction Embedding for Surface Anomaly Detection[C]//Proceedings of the IEEE International Conference on Computer Vision.Montreal:IEEE Press,2021:8330-8339.
[10]KIM D,JEONG D,KIM H,et al.Spatial Contrastive Learning for Anomaly Detection and Localization[J].IEEE Access,2022,10:17366-17376.
[11]LI C L,SOHN K,YOON J,et al.Cutpaste:Self-SupervisedLearning for Anomaly Detection and Localization[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.Nashville:IEEE Press,2021:9664-9674.
[12]ULGER F,YUKSELS E,YILMAZ A.Anomaly Detection forSolder Joints using β-VAE[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2021,11(12):2214-2221.
[13]SCHLEGL T,SEEBÖCK P,WALDSTEIN S M,et al.Unsupervised Anomaly Detection withGenerative Adversarial Networks to Guide Marker Discovery[C]//International Conference on Information Processing in Medical Imaging.Springer,2017:146-157.
[14]XING H J,HAO Z.Novelty Detection Method Based on Global and Local Discriminative Adversarial Autoencoder[J].Compu-ter Science,2021,48(6):202-209.
[15]KOBYZEV I,PRINCE S J D,BRUBAKER M A.NormalizingFlows:An Introduction and Review of Current Methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(11):3964-3979.
[16]DINH L,KRUEGER D,BENGIO Y.NICE:Non-Linear Independent Components Estimation[EB/OL].(2015-04-10)[2022-10-10].https://arxiv.org/pdf/1410.8516.pdf.
[17]HUANG C W,DINH L,COURVILLE A.Augmented Normalizing Flows:Bridging the Gap between Generative Flows and Latent Variable Models[EB/OL].(2020-02-17)[2022-10-10].https://arxiv.org/pdf/2002.07101.pdf.
[18]RUDOLPH M,WANDT B,ROSENHAHN B.Same Same but Differnet:Semi-Supervised Defect Detection with Normalizing Flows[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision.Waikoloa:IEEE Press,2021:1907-1916.
[19]CIMPOI M,MAJI S,KOKKINOS I,et al.Describing Textures in the Wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE Press,2014:3606-3613.
[20]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImagenetClassification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017,60(6):84-90.
[21]KRUSE J,DETOMMASO G,KÖTHE U,et al.HINT:Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference[C]//Proceedings of the 35th AAAI Confe-rence on Artificial Intelligence.2021:8191-8199.
[22]DINH L,SOHL-DICKSTEIN J,BENGIO S.Density Estimation using Real NVP[EB/OL].(2017-02-27)[2022-07-08].https://arxiv.org/pdf/1605.08803.pdf.
[23]DEFARD T,SETKOV A,LOESCH A,et al.Padim:A Patch Distribution Modeling Framework for Anomaly Detection and Localization[C]//International Conference on Pattern Recognition.Springer,2021:475-489.
[24]AKCAY S,ATAPOUR-ABARGHOUEI A,BRECKON T P.Ganomaly:Semi-Supervised Anomaly Detection via Adversarial Training[C]//Asian Conference on Computer Vision.Springer,2018:622-637.
[25]PANG G,DING C,SHEN C.Explainable Deep Few-Shot Ano-maly Detection with Deviation Networks[EB/OL].(2021-08-01)[2022-10-10].https://arxiv.org/pdf/2108.00462.pdf.
[26]DING C,PANG G,SHEN C.Catching Both Gray and BlackSwans:Open-Set Supervised Anomaly Detection[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2022:7388-7398.
[27]VENKATARAMANAN S,PENG K C,SINGH R V,et al.Attention Guided Anomaly Localization in Images[C]//European Conference on Computer Vision.2020:485-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!