计算机科学 ›› 2024, Vol. 51 ›› Issue (4): 158-164.doi: 10.11896/jsjkx.230100089

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于差异补偿和短期采样对比损失的城市电力负荷预测方法

陈润桓1, 戴华1,2, 郑桂能3, 李惠1, 杨庚1,2   

  1. 1 南京邮电大学计算机学院、软件学院、网络空间安全学院 南京210023
    2 江苏省大数据安全与智能处理重点实验室 南京210023
    3 犹他州立大学计算机科学系 洛根84322
  • 收稿日期:2023-01-17 修回日期:2023-04-21 出版日期:2024-04-15 发布日期:2024-04-10
  • 通讯作者: 戴华(daihua@njupt.edu.cn)
  • 作者简介:(1221045632@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金(61872197,61902199,61972209);安徽省高等学校科研计划重大项目(2022AH040148);江苏省研究生科研创新项目(SJCX22_0265)

Urban Electricity Load Forecasting Method Based on Discrepancy Compensation and Short-termSampling Contrastive Loss

CHEN Runhuan1, DAI Hua1,2, ZHENG Guineng3, LI Hui1 , YANG Geng1,2   

  1. 1 School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
    2 Jiangsu Key Laboratory of Big Data Security & Intelligent Processing,Nanjing 210023,China
    3 Computer Science Departement,Utah State university,Logan 84322,USA
  • Received:2023-01-17 Revised:2023-04-21 Online:2024-04-15 Published:2024-04-10
  • Supported by:
    National Natural Science Foundation of China(61872197,61902199,61972209),Major Program of Natural Science Research Foundation of Anhui Provincial Education Department(2022AH040148) and Jiangsu Province Postgraduate Scientific Research Innovation Program(SJCX22_0265).

摘要: 城市电力负荷预测是城市智能电网规划和调度的一项重要内容。然而,城市电力负荷预测中存在数据不均的问题,给城市电力负荷预测带来了巨大挑战。传统的基于单一模型的方法难以解决数据不均的问题,而现有的基于多模型的预测方法根据电力负荷分布将数据集拆分成多个子数据集,然后分别建立多个预测模型进行预测,该类方案在一定程度上解决了数据不均问题,但存在模型构建成本较高、不同分布样本间共有的电力分布特征发生分离等问题。基于此,提出了一个轻量级城市电力负荷预测模型(Lighten-DCSC-LSTM)。该模型通过在长短期记忆网络的基础上引入差异补偿的思想和短期采样对比损失进行构建,同时构建共享特征提取层来降低模型构建成本。其中,差异补偿思想通过学习不同电力负荷分布样本之间的差异对主序列预测模块的预测结果进行差异补偿,短期采样对比损失通过动态类中心的对比学习损失对模型的训练进行正则化。为了验证模型的性能,进行了参数调优和对比实验。对比实验结果表明,模型在预测电力负荷的任务中取得了良好的性能。

关键词: 电力负荷预测, 长短期记忆网络, 深度学习, 对比学习损失

Abstract: Urban power load forecasting is an important content of urban smart grid planning and scheduling.However,the pro-blem of data imbalance in urban power load forecasting poses a great challenge to urban power load forecasting.Traditional single-model-based methods can hardly solve the problem of data imbalance.The existing multi-model-based forecasting methods split the datasets into multiple sub-datasets according to the electricity load profiles,and then build multiple forecasting models for forecasting,which can solve the data imbalance problem to a certain extent,but there are problems such as high model construction cost and separation of the common electricity distribution characteristics among different distribution profiles.Based on this,this paper proposes a lighten urban electric load forecasting model(Lighten-DCSC-LSTM).It is constructed by introducing the idea of discrepancy compensation and short-term sampling contrastive loss on the basis of long and short-term memory networks,while building a shared feature extraction layer to reduce the model construction cost.Among them,the idea of discrepancy compensation compensates the prediction results of the main sequence prediction module by learning the differences between different power load distribution samples,and the short-term sampling contrastive loss regularizes the training of the model by the contrastive learning loss of the dynamic class center.To verify the performance of the proposed model,parameter tuning and comparison experiments are conducted.The results of the comparison experiments show that the model achieves good perfor-mance in the task of forecasting electricity loads.

Key words: Electricity load forecasting, Long-short term memory networks, Deep learning, Contrastive learning loss

中图分类号: 

  • TP183
[1]SHAHIDEHPOUR M,YAMIN H,LI Z.Market operations in electric power systems:forecasting,scheduling,and risk ma-nagement[M].John Wiley & Sons,2003.
[2]PENYA Y K,BORGES C E,FERNÁNDEZ I.Short-term load forecasting in non-residential buildings[C]//IEEE Africon'11.IEEE,2011:1-6.
[3]MANSOOR M,GRIMACCIA F,LEVA S,et al.Comparison of echo state network and feed-forward neural networks in electrical load forecasting for demand response programs[J].Mathematics and Computers in Simulation,2021,184:282-293.
[4]KOENKER R,XIAO Z.Quantile autoregression[J].Journal ofthe American statistical association,2006,101(475):980-990.
[5]SINGH S,PARMAR K S,KUMAR J,et al.Developmentof new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average(ARIMA) models in application to one month forecast the casualties cases of COVID-19[J].Chaos,Solitons & Fractals,2020,135:109866.
[6]JOSHUVA A,SUGUMARAN V.A machine learning approachfor condition monitoring of wind turbine blade using autoregressive moving average(ARMA) features through vibration signals:a comparative study[J].Progress in Industrial Ecology,an International Journal,2018,12(1/2):14-34.
[7]CHEN J F,WANG W M,HUANG C M.Analysis of an adap-tive time-series autoregressive moving-average(ARMA) model for short-term load forecasting[J].Electric Power Systems Research,1995,34(3):187-196.
[8]KHAN A R,MAHMOOD A,SAFDAR A,et al.Load Forecas-ting and Dynamic Pricing based Energy Management in Smart Grid-A Review[C]//International Multi-topic Conference.2015.
[9]SAVIOZZI M,MASSUCCO S,SILVESTRO F.Implementation of advanced functionalities for Distribution Management Systems:Load forecasting and modeling through Artificial Neural Networks ensembles[J].Electric Power Systems Research,2019,167:230-239.
[10]ZHAO H,MAGOULÈS F.A review on the prediction of build-ing energy consumption[J].Renewable and Sustainable Energy Reviews,2012,16(6):3586-3592.
[11]HOPFIELD J.Neural networks and physical systems withemergent collective computational abilities[J].Proceedings of the national academy of sciences,1982,79(8):2554-2558.
[12]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780.
[13]SCHUSTER M,PALIWAL K K.Bidirectional recurrent neural networks[J].IEEE transactions on Signal Processing,1997,45(11):2673-2681.
[14]ALHUSSEIN M,AURANGZEB K,HAIDER S I.Hybrid CNN-LSTM model for short-term individual household load forecasting[J].IEEE Access,2020,8:180544-180557.
[15]CHOI M,KIM H,HAN B,et al.Channel attention is all you need for video frame interpolation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:10663-10671.
[16]LI X,LU X L.ethod for Forecasting Short-Term Power Load Based on Dual-Stage Attention Mechanism and Gated Recurrent Unit Network[J].Computer Engineering,2022,48(2):291-296,305.
[17]QIN J,ZHANG Y,FAN S,et al.Multi-task short-term reactive and active load forecasting method based on attention-LSTM model[J].International Journal of Electrical Power & Energy Systems,2022,135:107517.
[18]GHOSH S,VINYALS O,STROPE B,et al.Contextual lstm(clstm) models for large scale nlp tasks[J].arXiv:1602.06291,2016.
[19]WENINGER F,ERDOGAN H,WATANABE S,et al.Speech enhancement with LSTM recurrent neural networks and its application to noise-robust ASR[C]//International Conference on Latent Variable Analysis and Signal Separation.Cham:Sprin-ger,2015:91-99.
[20]CAO J,LI Z,LI J.Financial time series forecasting model based on CEEMDAN and LSTM[J].Physica A:Statistical mechanics and its applications,2019,519:127-139.
[21]HU Y L,CHEN L.A nonlinear hybrid wind speed forecasting model using LSTM network,hysteretic ELM and Differential Evolution algorithm[J].Energy conversion and management,2018,173:123-142.
[22]LIANG T,ZHAO Q,LV Q,et al.A novel wind speed prediction strategy based on Bi-LSTM,MOOFADA and transfer learning for centralized control centers[J].Energy,2021,230:120904.
[23]AGRAWAL R,FALOUTSOS C,SWAMI A.Efficient similarity search in sequence databases[C]//International Conference on Foundations of Data Organization and Algorithms.Berlin:Springer,1993:69-84.
[24]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!