计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230100113-6.doi: 10.11896/jsjkx.230100113

• 人工智能 • 上一篇    下一篇

基于图卷积网络的甲型流感H3N2抗原性预测

何明龙, 赵锟, 李维华, 李川   

  1. 云南大学信息学院 昆明 650503
  • 发布日期:2023-11-09
  • 通讯作者: 李维华(lywey@163.com)
  • 作者简介:(hml13017483632@163.com)
  • 基金资助:
    国家自然科学基金(32060151);云南大学第十三届研究生科研创新项目(2021Y280);云南省中青年学术与技术带头人后备人才培养计划项目(202305AC160014)

Antigenicity Prediction of Influenza A/H3N2 Based on Graph Convolutional Networks

HE Minglong, ZHAO Kun, LI Weihua, LI Chuan   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650503,China
  • Published:2023-11-09
  • About author:HE Minglong,born in 1998,postgraduate.His main research interests include deep learning and bioinformatics.
    LI Weihua,born in 1977,Ph.D,associa-te professor.Her main research interests include data mining and bioinformatics.
  • Supported by:
    National Natural Science Foundation of China(32060151),13th Postgraduate Scientific Research Innovation Project of Yunnan University(2021Y280) and Reserve Talents for Young and Middle-aged Academic and Technical Leaders in Yunnan Province Training Program(202305AC160014).

摘要: 流感病毒血凝素蛋白的持续和累积变化会产生新的抗原株,能够逃避人类免疫并引起季节性流感或流感大爆发。及时识别新的抗原变异体,对疫苗筛选和流感预防是至关重要的。图嵌入模型在部分数据缺失的情况下仍然可以实现有效的相互关系建模。针对甲型流感病毒H3N2,提出一种基于图卷积神经网络的抗原性预测方法,获取流感毒株低维稠密嵌入向量,同时对序列信息进行编码并作为补充特征,利用深度神经网络模型对特征进行融合并学习关键的抗原特征,完成抗原性预测。在两个数据集上的实验结果表明,该方法相比其他同类方法,显著提升了抗原相似性预测性能,具有良好的鲁棒性和可扩展性。此外,从实验中还可以看出,图卷积神经网络可以有效地获取抗原相似关系的抗原特征。

关键词: 甲型流感, H3N2, 抗原相似性, 图卷积网络, 神经网络

Abstract: Continual and accumulated mutations in the hemagglutinin(HA) protein of influenza A virus generates novel antigenic strains that can evade human immunity and cause seasonal influenza or influenza pandemics.Timely identification of new antigenic variants is crucial for the selection of vaccines and influenza prevention.Graph embedding models can effectively model interactions even when some data is missing.For influenza A virus H3N2,this paper proposes an antigenicity prediction method based on graph convolutional networks to obtain the low-dimensional dense embedding vector of influenza strain.Then,it encodes the sequence information as supplementary features.Furthermore,deep neural networks is adopted to fuse these features and learn the dominative features for antigenicity prediction.Experimental results on two datasets show that,compared with those of exis-ting methods,the proposed method significantly improves the performance of antigenic similarity prediction,and has good robustness and scalability.In addition,it can be seen from experiments that graph convolutional networks can effectively obtain the antigenic features of the antigenic similarity relationship.

Key words: Influenza A, H3N2, Antigenic similarity, Graph convolutional network, Neural network

中图分类号: 

  • TP391
[1]BLAIR R H,DAWSON E D,TAYLOR A W,et al.Clinical vali-dation of the FluChip-8G influenza a+ B assay for influenza type and subtype identification[J].Journal of Clinical Virology,2019,118:20-27.
[2]SMITH D J,LAPEDES A S,DE JONG J C,et al.Mapping the antigenic and genetic evolution of influenza virus[J].Science,2004,305(5682):371-376.
[3]SUN H,YANG J,ZHANG T,et al.Using sequence data toinfer the antigenicity of influenza virus[J].MBio,2013,4(4):e00230-13.
[4]CAI Z,ZHANG T,WAN X F.A computational framework for influenza antigenic cartography[J].PLoS Computational Biology,2010,6(10):e1000949.
[5]World Health Organization.Serological detection of avian influenza A(H7N9) virus infections by modified horse red blood cells haemagglutination-inhibition assay[Z].2013.
[6]AMPOFO W K,AZZIZ-BAUMGARTNER E,BASHIR U,et al.Strengthening the influenza vaccine virus selection and development process:Report of the 3rd WHO Informal Consultation for Improving Influenza Vaccine Virus Selection held at WHO headquarters,Geneva,Switzerland,1-3 April 2014[J].Vaccine,2015,33(36):4368-4382.
[7]KOEL B F,BURKE D F,BESTEBROER T M,et al.Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution[J].Science,2013,342(6161):976-979.
[8]LEE M S,CHEN J S E.Predicting antigenic variants of influenza A/H3N2 viruses[J].Emerging Infectious Diseases,2004,10(8):1385.
[9]LIAO Y C,LEE M S,KO C Y,et al.Bioinformatics models for predicting antigenic variants of influenza A/H3N2 virus[J].Bioinformatics,2008,24(4):505-512.
[10]LEES W D,MOSS D S,SHEPHERD A J.A computational analysis of the antigenic properties of haemagglutinin in influenza A H3N2[J].Bioinformatics,2010,26(11):1403-1408.
[11]PENG Y,WANG D,WANG J,et al.A universal computational model for predicting antigenic variants of influenza A virus based on conserved antigenic structures[J].Scientific Reports,2017,7(1):42051.
[12]YAO Y,LI X,LIAO B,et al.Predicting influenza antigenicityfrom Hemagglutintin sequence data based on a joint random fo-rest method[J].Scientific Reports,2017,7(1):1545.
[13]KAWASHIMA S,POKAROWSKI P,POKAROWSKA M,et al.AAindex:amino acid index database,progress report 2008[J].Nucleic Acids Research,2007,36(suppl_1):D202-D205.
[14]NEHER R A,BEDFORD T,DANIELS R S,et al.Prediction,dynamics,and visualization of antigenic phenotypes of seasonal influenza viruses[J].Proceedings of the National Academy of Sciences,2016,113(12):E1701-E1709.
[15]YIN R,THWIN N N,ZHUANG P,et al.IAV-CNN:a 2D convolutional neural network model to predict antigenic variants of influenza A virus[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,19(6):3497-3506.
[16]ASGARI E,MOFRAD M R K.Continuous distributed representation of biological sequences for deep proteomics and genomics[J].PloS One,2015,10(11):e0141287.
[17]ARCHETTI I,HORSFALL JR F L.Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum[J].The Journal of Experimental Medicine,1950,92(5):441-462.
[18]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[19]MORRIS D H,GOSTIC K M,POMPEI S,et al.Predictive mo-deling of influenza shows the promise of applied evolutionary biology[J].Trends in Microbiology,2018,26(2):102-118.
[20]CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014.
[21]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[22]NAIR V,HINTON G E.Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning(ICML-10).2010:807-814.
[23]LI M,ZHANG T,CHEN Y,et al.Efficient mini-batch training for stochastic optimization[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:661-670.
[24]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014.
[25]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!