计算机科学 ›› 2024, Vol. 51 ›› Issue (5): 151-161.doi: 10.11896/jsjkx.230200044

• 计算机图形学&多媒体 • 上一篇    下一篇

基于双平滑函数秩近似和群稀疏的高光谱图像恢复模型

姜斌, 叶军, 张历洪, 司伟纳   

  1. 南京邮电大学理学院 南京 210023
  • 收稿日期:2023-02-28 修回日期:2023-07-06 出版日期:2024-05-15 发布日期:2024-05-08
  • 通讯作者: 叶军(yj8422092@163.com)
  • 作者简介:(njuptjiangbin@163.com)
  • 基金资助:
    国家自然科学基金(61971234);南京邮电大学校内基金(NY220209)

Hyperspectral Image Recovery Model Based on Bi-smoothing Function Rank Approximation andGroup Sparse

JIANG Bin, YE Jun, ZHANG Lihong, SI Weina   

  1. School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Received:2023-02-28 Revised:2023-07-06 Online:2024-05-15 Published:2024-05-08
  • About author:JIANG Bin,born in 1998,postgraduate.His main research interests include pattern recognition,remote sensing image processing and machine learning.
    YE Jun,born in 1981,Ph.D,associate professor.His main interests include pattern recognition,machine learning,and image processing.
  • Supported by:
    National Natural Science Foundation of China(61971234) and Intramural Fund of Nanjing University of Posts and Telecommunications(NY220209).

摘要: 高光谱图像(HSI)具有良好的光谱识别能力,被广泛地应用于各种领域。然而,HSI在成像过程中易受到混合噪声的污染,会严重削弱后续任务的准确性,如何高质量地恢复HSI是需要解决的首要问题。目前,基于低秩先验和全变分正则化结合的HSI去噪方法取得了较好的性能,但这些方法一方面忽略了高强度条纹噪声在空间结构和光谱分布上的特征,使得噪声无法完全去除,另一方面没有考虑HSI差分图像低秩子空间的信息,不能挖掘潜在的局部空间光滑结构。为此,提出了一种基于双平滑函数秩近似和群稀疏的HSI恢复模型。首先,利用双平滑函数秩近似模型探索干净HSI和条纹噪声的低秩结构,去除结构化条纹噪声等高强度混合噪声。其次,将基于E3DTV的群稀疏正则化融入双平滑函数秩近似模型中,充分挖掘HSI差分图像的稀疏先验信息,进一步提升图像在空间恢复和光谱特征保留方面的性能。最后,设计了交替方向乘子法(ADMM)求解所提出的BSRAGS模型。仿真和真实数据实验均表明,所提模型能够有效提高图像恢复质量。

关键词: 高光谱图像, 平滑函数, 群稀疏, 低秩约束, 条纹噪声, E3DTV

Abstract: Hyperspectral image(HSI) has good spectral recognition capabilities and is widely used in various fields.However,HSI is susceptible to mixed noise pollution during imaging,which will seriously weaken the accuracy of subsequent tasks,and how to recover HSI with high quality is the first problem that needs to be solved.At present,the HSI denoising methods based on the combination of low-rank prior and total variational regularization have achieved good performance.On the one hand,these methods ignore the characteristics of high-intensity stripe noise in spatial structure and spectral distribution,so that the noise cannot be completely removed,and on the other hand,they do not consider the information of low-rank subspace of HSI differential images,then cannot explore the potential local spatial smooth structure.In order to solve these problems,an HSI recovery model based on bi-smoothing function rank approximation and group sparse is proposed.Firstly,the bi-smoothing function rank approximation model is used to explore the low-rank structure of clean HSI and stripe noise,which can remove high-intensity mixed noise such as structured stripe noise.Secondly,the group sparse regularization based on E3DTV is integrated into the bi-smoothing function rank approximation model,which can fully exploit the sparse prior information of HSI differential images and further improves the performance of images in spatial recovery and spectral feature retention.Finally,an alternating direction multiplier method(ADMM) is designed to solve the proposed BSRAGS model.Simulation and real data experiments show that the proposed model can effectively improve the image restoration quality.

Key words: Hyperspectral image, Smoothing function, Group sparse, Low-rank constraint, Stripe noise, E3DTV

中图分类号: 

  • TP751
[1]WANG Y,PENG J,ZHAO Q,et al.Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(4):1227-1243.
[2]吴庆岗,刘中驰,贺梦坤.融合MS3D-CNN和注意力机制的高光谱图像分类[J].重庆理工大学学报(自然科学),2023,37(2):173-182.
[3]ZHAO Y Q,YANG J.Hyperspectral image denoising via sparse representation and low-rank constraint[J].IEEE Transactions on Geoscience and Remote Sensing,2014,53(1):296-308.
[4]LI J,YUAN Q,SHEN H,et al.Noise removal from hyperspectral image with joint spectral-spatial distributed sparse representation[J].IEEE Transactions on Geoscience and Remote Sen-sing,2016,54(9):5425-5439.
[5]BUADES A,COLL B,MOREL J M.A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2005,2:60-65.
[6]ELAD M,AHARON M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Tran-sactions on Image Processing,2006,15(12):3736-3745.
[7]DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
[8]YUAN Q,ZHANG L,SHEN H.Hyperspectral image denoising employing a spectral-spatial adaptive total variation model[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3660-3677.
[9]PENG J,WANG H,CAO X,et al.Fast noise removal in hyperspectral images via representative coefficient total variation[J].IEEE Transactions on Geoscience and RemoteSen-sing,2022,60:1-17.
[10]ZHANG Q,YUAN Q Q,LI J,et al.Hybrid Noise Removal in Hyperspectral Imagery With a Spatial-Spectral Gradient Network[J].IEEE Transactions on Geoscience and Remote Sen-sing,2019,57(10):7317-7329.
[11]CAO X Y,FU X Y,XU C,et al.Deep Spatial-Spectral Global Reasoning Network for Hyperspectral Image Denoising[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-14.
[12]ZHANG H,HE W,ZHANG L,et al.Hyperspectral image restoration using low-rank matrix recovery[J].IEEE Transactions on Geoscience and Remote Sensing,2013,52(8):4729-4743.
[13]HE W,ZHANG H,SHEN H,et al.Hyperspectral image de-noising using local low-rank matrix recovery and global spatial-spectral total variation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(3):713-729.
[14]FAN H,LI J,YUAN Q,et al.Hyperspectral image denoising with bilinear low rank matrix factorization[J].Signal Proces-sing,2019,163:132-152.
[15]YE H,LI H,YANG B,et al.A novel rank approximation me-thod for mixture noise removal of hyperspectral images[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(7):4457-4469.
[16]CAI J,HE W,ZHANG H.Anisotropic spatial-spectral total va-riation regularized double low-rank approximation for HSI denoising and destriping[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-19.
[17]ZHANG H,CAI J,HE W,et al.Double low-rank matrix decomposition for hyperspectral image denoising and destriping[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-19.
[18]CHANG Y,YAN L,FANG H,et al.Anisotropic spectral-spatialtotal variation model for multispectral remote sensing image destriping[J].IEEE Transaction on Image Processing,2015,24(6):1852-1866.
[19]PENG J,XIE Q,ZHAO Q,et al.Enhanced 3DTV regularization and its applications on hyperspectral image denoising and compressed sensing[J].IEEE Transaction on Image Processing,2020,29:7889-7903.
[20]ZHENG Y B,HUANG T Z,ZHAO X L,et al.Double-factor-regularized low-rank tensor factorization for mixed noise remo-val in hyperspectral image[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(12):8450-8464.
[21]ECKSTEIN J,YAO W.Understanding the convergence of thealternating direction method of multipliers:Theoretical and computational perspectives[J].Pacific Journal of Optimization,2015,11(4):619-644.
[22]KRISHNAN D,FERGUS R.Fast image deconvolution usinghyper-Laplacian priors[J].Advances in Neural Information Processing Systems,2009,22:1033-1041.
[23]XIE Q,ZHAO Q,MENG D,et al.Multispectral images denoi-sing by intrinsic tensor sparsity regularization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New York,2016:1692-1700.
[24]CAI J F,CANDES E J,SHEN Z.A singular value thresholding algorithm for matrix completion[J].SIAM Journal on Optimization,2010,20(4):1956-1982.
[25]LIU G C,LIN Z C,YAN S C,et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2013,35(1):171-184.
[26]CHEN Y,HE W,YOKOYA N,et al.Hyperspectral image restoration using weighted group sparsity-regularized low-rank tensor decomposition[J].IEEE Transactions on Cybernetics,2019,50(8):3556-3570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!