计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 247-255.doi: 10.11896/jsjkx.230300033

• 计算机图形学&多媒体 • 上一篇    下一篇

基于眼部特征频域信息的早期疲劳检测

火星星1, 胡瑞敏2, 李怡欣1   

  1. 1 西安电子科技大学网络与信息安全学院 西安 710126
    2 西安电子科技大学杭州研究院 杭州 310000
  • 收稿日期:2023-03-06 修回日期:2023-07-30 出版日期:2024-06-15 发布日期:2024-06-05
  • 通讯作者: 胡瑞敏(rmhu@xidian.edu.cn)
  • 作者简介:(imut_hxx@yeah.net)
  • 基金资助:
    国家自然科学基金(U22A2035);南宁市重点研发计划(20231042)

Early-stage Fatigue Detection Based on Frequency Domain Information of Eye Features

HUO Xingxing1, HU Ruimin2, LI Yixin1   

  1. 1 School of Cyber Engineering,Xidian University,Xi’an 710126,China
    2 Hangzhou Institution of Technology,Xidian University,Hangzhou 310000,China
  • Received:2023-03-06 Revised:2023-07-30 Online:2024-06-15 Published:2024-06-05
  • About author:HUO Xingxing,born in 1998,postgra-duate.Her main research interests include pattern recognition and machine learning.
    HU Ruimin,born in 1964,Ph.D,professor,Ph.D supervisor.His main research interests include behavior pattern mi-ning and complex relationship analysis.
  • Supported by:
    National Natural Science Foundation of China(U22A2035) and Nanning Scientific Research and Technological Development Plans(20231042).

摘要: 行李X光安检员工作疲劳是造成错检、漏检的重要原因。目前疲劳检测的方法主要通过发现打哈欠、打瞌睡和长时间闭眼等明显的迹象来检测中晚期疲劳,然而对于安检工作人员来说,出现这样明确的标志时,可能已经发生了安检事故,此时再进行疲劳检测为时已晚。因此,在早期阶段发现疲劳,并对疲劳的发生及时预警是非常有价值的。由于早期疲劳会有细微的面部表现特性,时域参数的不可逆性导致其无法完全表示。为了解决此问题,提出了一种基于眼部特征频域信息的行李X光安检员早期疲劳检测方法,将原始时域信息转换到表达能力更强的频域特征空间。该方法首先通过面部检测算法获取眼部横纵比(Eye Aspect Ratio,EAR)时间序列;然后利用频域特征提取方法得到频域特征序列,来表示更加细微的特征;最后利用分层多尺度网络HM-LSTM进行训练及验证。在公开数据集UTA-RLDD上的对比实验结果表明,所提方法对早期疲劳的识别率提升了2%,证明了频域特征比时域特征有更好的表达能力。

关键词: 眼睛横纵比, 频域特征, 时频转换, 早期疲劳, 机场安检

Abstract: The fatigue of baggage X-ray security inspector is an important cause of false and missed inspection.Previous work in this field mostly focused on detecting extreme fatigue with explicit signs such as yawning,nodding off and prolonged eye closure.However,for security inspectors,such explicit signs may not appear until only before an accident,and it is too late to detect fatigue.Thus,there is significant value in detecting fatigue at an early stage,to warn the occurrence of fatigue in time.Due to the subtle facial performance characteristics of early-stage fatigue,the irreversibility of time-domain parameters leads to its inability for complete representations.To solve this problem,an early-stage fatigue detection method for baggage X-ray security inspectors based on the frequency domain information of eye features is proposed,which converts the original time domain information into a more expressive frequency domain feature space.It firstly obtained the eye aspect ratio series through the facial detection algorithm,then the time-domain features are transformed into frequency-domain space for analysis to mine more subtle features.Finally,HM-LSTM is used for training and verification. Experiment is conducted on the dataset UTA-RLDD.The results show that the proposed architecture improves the recognition rate of early-stage fatigue by 2%,demonstrating that frequency domain features have better expression ability than time domain features.

Key words: Eye aspect ratio, Frequency domain feature, Time-Frequency transform, Early-stage fatigue, Airport security

中图分类号: 

  • TP391
[1]AKERSTEDT T,GILLBERG M.Subjective and objectives leepiness in the active individual[J].International Journal of Neuroscience,1990,52(1/2):29-37.
[2]SMITH A P,ALLEN P H,WADSWORTH E J K.Seafarer fatigue:The Cardiff researchprogramme[J/OL].https://orca.cardiff.ac.uk/id/eprint/52615/.
[3]JIA W,PENG H,RUAN N,et al.WiFind:Driver fatigue detection with fine-grained Wi-Fi signal features[J].IEEE Transactions on Big Data,2018,6(2):269-282.
[4]LIU P,CHI H L,LI X,et al.Effects of dataset characteristics on the performance of fatigue detection for crane operators using hybrid deep neural networks[J].Automation in Construction,2021,132:103901.
[5]LI G,CHUNG W Y.A context-aware EEG headset system for early detection of driver drowsiness[J].Sensors,2015,15(8):20873-20893.
[6]GHODDOOSIAN R,GALIB M,ATHITSOS V.A realisticdataset and baseline temporal model for early drowsiness detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019.
[7]VAN SEGBROECK M,TSIARTAS A,NARAYANAN S S.A robust frontend for VAD:exploiting contextual,discriminative and spectral cues of human voice[C]//INTERSPEECH.2013:704-708.
[8]ZHANG R,LI P H,LIANG K W,et al.Voice Activity Detection by Jo1int MRCG and MFCC Features with Robustness Detection based GRU Networks[C]//2021 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-TW).IEEE,2021.
[9]ABDULLAH S,ZAMANI M,DEMOSTHENOUS A.A dis-crete wavelet transform-based voice activity detection and noise classification with sub-band selection[C]//2021 IEEE International Symposium on Circuits and Systems(ISCAS).IEEE,2021:1-5.
[10]LIU F,DEMOSTHENOUS A.A computation efficient voice activity detector for low signal-to-noise ratio in hearing aids[C]//2021 IEEE International Midwest Symposium on Circuits and Systems(MWSCAS).IEEE,2021:524-528.
[11]KAIDA K,TAKAHASHI M,AKERSTEDT T,et al.Validation of theKarolinska sleepiness scale against performance and EEG variables[J].Clinical Neurophysiology,2006,117(7):1574-1581.
[12]XU C,WANG X,CHEN X.Modeling fatigue level by driver’s lane-keeping indicators[C]//ICTE 2013:Safety,Speediness,Intelligence,Low-Carbon,Innovation.2013:2282-2288.
[13]ZHANG R,ZHU T J,ZOU Z L,et al.A Survey of Driver Fatigue Detection Methods[J].Computer Engineering and Application,2022,58(21):53-66.
[14]ZHU X,ZHENG W L,LU B L,et al.EOG-based drowsiness detection using convolutional neural networks[C]//2014 International Joint Conference on Neural Networks(IJCNN).IEEE,2014:128-134.
[15]JIAO Y,DENG Y,LUO Y,et al.Driver sleepiness detectionfrom EEG and EOG signals using GAN and LSTM networks[J].Neurocomputing,2020,408:100-111.
[16]NIU J,WANG F,SONG J Q,et al.Video Emotion Recognition of Face Features and Pulse Signal Features[J].Journal of Chongqing University of Technology(Natural Science),2021,35(8):144-150.
[17]CHEN S,SUN Y,ZHANG H,et al.Speech Fatigue DetectionBased on Deep Learning[C]//Journal of Physics:Conference Series.IOP Publishing,2022.
[18]XIE Y,LI F,WU Y,et al.Real-time detection for drowsy dri-ving via acoustic sensing on smartphones[J].IEEE Transactions on Mobile Computing,2020,20(8):2671-2685.
[19]TAO H,ZHANG G,ZHAO Y,et al.Real-time driver fatigue detection based on face alignment[C]//Ninth International Conference on Digital Image Processing(ICDIP 2017).SPIE,2017:6-11.
[20]BEKHOUCHE S E,RUICHEK Y,DORNAIKA F.Driverdrowsiness detection in video sequences using hybrid selection of deep features[J].Knowledge-Based Systems,2022,252:109436.
[21]YADAV S,RAI A.Frequency and temporal convolutional attention for text-independent speaker recognition[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:6794-6798.
[22]CECH J,SOUKUPOVA T.Real-time eye blink detection using facial landmarks[J/OL].https://dspace.cvut.cz/bitstream/handle/10467/64839/F3-DP-2016-Soukupova-Tereza-SOUKUPOVA_DP_2016.pdf;jsessionid=3C81CDFAD46C8E54026CF6FB17C9BCE9?sequence=-1.
[23]LEE Y,MIN J,HAN D K,et al.Spectro-temporal attention-based voice activity detection[J].IEEE Signal Processing Letters,2019,27:131-135.
[24]DING K,ZHENG S,QI X,et al.Acoustic Target Recognition Based on MFCC and SVM[C]//Man-Machine-Environment System Engineering:Proceedings of the 22nd International Conference on MMESE.Singapore:Springer Nature Singapore,2022:418-423.
[25]TADESSE E,SHENG W,LIU M.Driver drowsiness detection through HMM based dynamic modeling[C]//2014 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2014:4003-4008.
[26]REDDY B,KIM Y H,YUN S,et al.Real-time driver drowsiness detection for embedded system using model compression of deepneural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:121-128.
[27]PARK S,PAN F,KANG S,et al.Driver drowsiness detectionsystem based on feature representation learning using various deep networks[C]//Computer Vision-ACCV 2016 Workshops:ACCV 2016 International Workshops,Taipei,Taiwan,Revised Selected Papers,Part III.Springer,2017:154-164.
[28]WENG C H,LAI Y H,LAI S H.Driver drowsiness detection via a hierarchical temporal deep belief network[C]//Computer Vision-ACCV 2016 Workshops:ACCV 2016 International Workshops,Taipei,Taiwan,Revised Selected Papers,Part III 13.Springer,2017:117-133.
[29]ABTAHI S,OMIDYEGANEH M,SHIRMOHAMMADI S,et al.YawDD:A yawning detection dataset[C]//Proceedings of the 5th ACM Multimedia Systems Conference.2014:24-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!