计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400115-9.doi: 10.11896/jsjkx.230400115
李金霞1, 卞华星1, 温富国1, 胡天牧2, 秦诗涵3, 吴涵3, 马晖3
LI Jinxia1, BIAN Huaxing1, WEN Fuguo1, HU Tianmu2, QIN Shihan3, WU Han3, MA Hui3
摘要: 电网物资供应商履约质量是电网安全稳定运行的基础,供应商履约涉及环节众多且风险因素复杂,使得当前对其研究较为匮乏且大多停留在理论业务分析层面。针对这一问题,提出基于XGBoost(Extreme Gradient Boosting)的供应商履约风险预测模型,充分考虑业务全流程中的各种风险因素,综合内部供应链运行、知识图谱数据以及外部天眼查、疫情等数据,基于特征工程构造了191个风险特征进行初始训练,在模型优化后对筛选出的49个特征再次训练,兼顾实际业务中的预测准确性和特征可解释性要求,采用SHAP(SHapley Additive exPlanations)值方法进行模型解释。实验结果表明,对比其他3种主流机器学习算法,所提模型准确率、精确率、KS值分别高达93.05%,94.45%,45.38%,进而验证了XGBoost算法在履约风险预测中的可行性和优越性。该模型可应用到电网物资供应链中,进一步指导业务应用。
中图分类号:
[1]WU Y K.Risk management of power material procurement in power grid enterprises[J].China Logistics & Purchasing,2019(24):118-119. [2]XIE H Y,ZHONG F L,QIN M,et al.Study on the early-warning and control mechanism of the contract performance risk of power grid project materials[J].Guangxi Electric Power,2020(3):21-25. [3]SHANG H,LEI M,MA H C,et al.Research on big data application planning method of power supply chain[J].Electric Power,2017,50(6):69-74,94. [4]RU L J.Study on the early-warning and control mechanism of the contract performance risk of power grid project materials[J].Science and Technology & Innovation,2021(15):112-113. [5]LI Y W,ZHANG Y,ZHANG X,et al.Design and research of risk early warning scheme for power grid material suppliers[J].Encyclopedia Form,2018(17):437. [6]QU H L,XU K,JIN N,et al.Research on knowledge graph of power material supplier evaluation based on multi data sources[J].Smart Grid(Hans),2020(2):46-53. [7]CHEN F,CHU B J.Research on knowledge atlas of power material supplier evaluation based on multiple data sources[J].Finance & Accounting,2020(17):65-68. [8]SHI L,CUI Z,YANG F,et al.The problems and solutions of power supply suppliers’ performance in the post-epidemic era[J].Electric Power Equipment Management,2021(4):141-143. [9]REN M J,JIN G Q,WANG X W,et al.Microblog Popularity Prediction Algorithm Based on XGBoost[J].Data Acquisition and Processing,2022,37(2):383-395. [10]ZHUANG J Y,YANG G H,ZHENG H F,et al.CNN-LSTM-XGBoost short-term power load forecasting method based on multi-model fusion[J].Electric Power,2021,54(5):46-55. [11]ZHU J X,ZOU X S,XIONG W,et al.Short-Term Power Load Forecasting Based on Prophet and XGBoost Mixed Model[J].Modern Electric Power,2021,38(3):325-331. [12]LEI X N,LIN L F,XIAO B Q,et al.Re-exploration of default characteristics of small and micro enterprises:machine learning model based on SHAP interpretation method[J].Chinese Journal of Management Science,2021,27:1-13. [13]LIAO B,WANG Z N,LI M,et al.Integrating XGBoost andSHAP model for football player value prediction and characteri-stic analysis[J].Computer Science,2022,49(12):195-204. [14]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd Acmsigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794. [15]LUNDBERG S M,LEE S I.A unified approach to interpreting model predictions[C]//Advances in Neural Information Processing Systems.2017:4765-4774. |
|