计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400115-9.doi: 10.11896/jsjkx.230400115

• 交叉&应用 • 上一篇    下一篇

基于XGBoost的电网物资供应商履约风险预测

李金霞1, 卞华星1, 温富国1, 胡天牧2, 秦诗涵3, 吴涵3, 马晖3   

  1. 1 国网江苏省电力有限公司物资分公司 南京 210036
    2 江苏电力信息技术有限公司 南京 210000
    3 中国科学院信息工程研究所 北京 100085
  • 发布日期:2024-06-06
  • 通讯作者: 卞华星(nuaa_bhx@sina.com)
  • 作者简介:(798885953@qq.com)
  • 基金资助:
    国网江苏省电力有限公司科技项目(J2022071)

Performance Risk Prediction of Power Grid Material Suppliers Based on XGBoost

LI Jinxia1, BIAN Huaxing1, WEN Fuguo1, HU Tianmu2, QIN Shihan3, WU Han3, MA Hui3   

  1. 1 State Grid Jiangsu Electric Power Co.,Ltd.Materials Branch,Nanjing 210036,China
    2 Jiangsu Electric Power Information Technology Co.,Ltd,Nanjing 210000,China
    3 Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100085,China
  • Published:2024-06-06
  • About author:LI Jinxia,born in 1989,master.Her main research interest is supply chain operation management.
    BIAN Huaxing,born in 1989,master.His main research interest is supply chain operation management.
  • Supported by:
    Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd(J2022071).

摘要: 电网物资供应商履约质量是电网安全稳定运行的基础,供应商履约涉及环节众多且风险因素复杂,使得当前对其研究较为匮乏且大多停留在理论业务分析层面。针对这一问题,提出基于XGBoost(Extreme Gradient Boosting)的供应商履约风险预测模型,充分考虑业务全流程中的各种风险因素,综合内部供应链运行、知识图谱数据以及外部天眼查、疫情等数据,基于特征工程构造了191个风险特征进行初始训练,在模型优化后对筛选出的49个特征再次训练,兼顾实际业务中的预测准确性和特征可解释性要求,采用SHAP(SHapley Additive exPlanations)值方法进行模型解释。实验结果表明,对比其他3种主流机器学习算法,所提模型准确率、精确率、KS值分别高达93.05%,94.45%,45.38%,进而验证了XGBoost算法在履约风险预测中的可行性和优越性。该模型可应用到电网物资供应链中,进一步指导业务应用。

关键词: XGBoost, 特征工程, 供应商履约, 风险预测, 电网

Abstract: The performance quality of power grid material suppliers is the basis for the safe and stable operation of power grid,which involves many links and complex risk factors,causing the current research on it is relatively scarce and stays at the level of theoretical analysis.In order to solve this problem,a supplier performance risk prediction model based on XGBoost is proposed,which fully considers various risk factors during the whole process,integrates internal supply chain operation,knowledge map data,external eye inspection,epidemic situation and other data,constructs 191 risk features based on feature engineering for initial training,and retrains 49 selected features after model optimization,taking into account the requirements of prediction accuracy and feature interpretability in actual business,and uses SHAP method to explain the model.Experimental results show that,compared with other three mainstream machine learning algorithms,the accuracy rate,precision rate and KS value are as high as 93.05%,94.45% and 45.38%,which further verifies the feasibility and superiority of XGBoost model in the performance risk prediction.The prediction model can be applied to the power grid supply chain business to further guide the practical application.

Key words: XGBoost, Feature engineering, Supplier performance, Risk prediction, Power grid

中图分类号: 

  • TP309
[1]WU Y K.Risk management of power material procurement in power grid enterprises[J].China Logistics & Purchasing,2019(24):118-119.
[2]XIE H Y,ZHONG F L,QIN M,et al.Study on the early-warning and control mechanism of the contract performance risk of power grid project materials[J].Guangxi Electric Power,2020(3):21-25.
[3]SHANG H,LEI M,MA H C,et al.Research on big data application planning method of power supply chain[J].Electric Power,2017,50(6):69-74,94.
[4]RU L J.Study on the early-warning and control mechanism of the contract performance risk of power grid project materials[J].Science and Technology & Innovation,2021(15):112-113.
[5]LI Y W,ZHANG Y,ZHANG X,et al.Design and research of risk early warning scheme for power grid material suppliers[J].Encyclopedia Form,2018(17):437.
[6]QU H L,XU K,JIN N,et al.Research on knowledge graph of power material supplier evaluation based on multi data sources[J].Smart Grid(Hans),2020(2):46-53.
[7]CHEN F,CHU B J.Research on knowledge atlas of power material supplier evaluation based on multiple data sources[J].Finance & Accounting,2020(17):65-68.
[8]SHI L,CUI Z,YANG F,et al.The problems and solutions of power supply suppliers’ performance in the post-epidemic era[J].Electric Power Equipment Management,2021(4):141-143.
[9]REN M J,JIN G Q,WANG X W,et al.Microblog Popularity Prediction Algorithm Based on XGBoost[J].Data Acquisition and Processing,2022,37(2):383-395.
[10]ZHUANG J Y,YANG G H,ZHENG H F,et al.CNN-LSTM-XGBoost short-term power load forecasting method based on multi-model fusion[J].Electric Power,2021,54(5):46-55.
[11]ZHU J X,ZOU X S,XIONG W,et al.Short-Term Power Load Forecasting Based on Prophet and XGBoost Mixed Model[J].Modern Electric Power,2021,38(3):325-331.
[12]LEI X N,LIN L F,XIAO B Q,et al.Re-exploration of default characteristics of small and micro enterprises:machine learning model based on SHAP interpretation method[J].Chinese Journal of Management Science,2021,27:1-13.
[13]LIAO B,WANG Z N,LI M,et al.Integrating XGBoost andSHAP model for football player value prediction and characteri-stic analysis[J].Computer Science,2022,49(12):195-204.
[14]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22nd Acmsigkdd International Conference on Knowledge Discovery and Data Mining.2016:785-794.
[15]LUNDBERG S M,LEE S I.A unified approach to interpreting model predictions[C]//Advances in Neural Information Processing Systems.2017:4765-4774.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!