计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 221-228.doi: 10.11896/jsjkx.230500033

• 计算机图形学&多媒体 • 上一篇    下一篇

三维流场的流线深度特征学习与特征聚类

陈杰, 金林江, 郑红波, 秦绪佳   

  1. 浙江工业大学计算机科学与技术学院 杭州 310023
  • 收稿日期:2023-05-06 修回日期:2023-10-20 出版日期:2024-07-15 发布日期:2024-07-10
  • 通讯作者: 秦绪佳 (qxj@zjut.edu.cn)
  • 作者简介:(987458138@qq.com)
  • 基金资助:
    国家自然科学基金(61702455,61672462);浙江省自然科学基金(LY20F020025)

Deep Feature Learning and Feature Clustering of Streamlines in 3D Flow Fields

CHEN Jie, JIN Linjiang, ZHENG Hongbo, QIN Xujia   

  1. College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
  • Received:2023-05-06 Revised:2023-10-20 Online:2024-07-15 Published:2024-07-10
  • About author:CHEN Jie,born in 1998,master.His main search interests include computer graphics and digital image processing.
    QIN Xujia,born in 1968,Ph.D,professor.His main research interests include computer graphics,image processing and data visualization.
  • Supported by:
    National Natural Science Foundation of China(61702455,61672462) and Natural Science Foundation of Zhejiang Province,China(LY20F020025).

摘要: 流场可视化指将流体运动的数据转换为视觉形式,以便更好地理解和分析流场的流动。利用流线来实现流场可视化,是当前最为热门的方法。文中提出了一种学习、聚类三维流场流线特性的方法。首先设计了一种基于卷积的自编码器来提取流线特征。该方法中的自编码器由编码器和解码器组成,其中编码器用卷积层降维的方式来提取输入流线的特征,而解码器使用转置卷积对流线特征进行上采样,以此重建流线。通过训练不断减小输入流线与重建流线的差异,可以让编码器提取到的流线特征更加准确。其次,改进了CFSFDP算法,用于流线特征聚类。针对原CFSFDP算法需要手动选取聚类中心,以及对距离参数过于敏感的缺点,改进了其指标计算方法,实现对聚类中心的自动选取,并且引入了高斯核密度估计,实现对截断距离参数的自适应计算。实验结果表明,所提方法在流线特征的学习以及聚类上具有良好的效果。

关键词: 流场可视化, 流线特征, 卷积自编码器, 聚类

Abstract: Flow field visualization refers to converting data of fluid motion into visual forms for better understanding and analysis of flow in the field.Using streamlines for flow field visualization is currently the most popular method.This paper proposes a method for learning and clustering 3D flow field streamline features.Firstly,a convolutional autoencoder-based method is designed to extract streamline features.The autoencoder in this method consists of an encoder and a decoder.The encoder uses convolutional layers to reduce the dimensions of input streamlines to extract features,while the decoder uses transpose convolution to upsample the streamline features to restore the streamlines.By continuously reducing the difference between input and restored streamlines through training,the encoder can extract more accurate streamline features.Secondly,this paper improves the CFSFDP(clustering by fast search and find of density peaks) algorithm for clustering streamline features.To address the issue of manually selecting cluster centers and the problem of sensitivity to distance parameters in the CFSFDP algorithm,this paper improves its metric calculation method,realizes automatic selection of cluster centers,and introduces adaptive calculation of truncation distance parameters using Gaussian kernel density estimation.Experimental results show that this method has good perfor-mance in learning streamline features and clustering.

Key words: Flow field visualization, Streamline feature, Convolutional autoencoder, Clustering

中图分类号: 

  • TP391
[1]SHAO X Q,CHENG Y,JIN Y Z.A review of the application of illustrative methods in 3D streamline visualization [J].Journal of Graphics,2022,43(5):753-764.
[2]ZHANG Q,XIAO L.Review of Visualization Drawing Methods of Flow Field Based on Streamlines [J].Computer Science,2021,48(12):1-7.
[3]HAN J,TAO J,WANG C.FlowNet:A Deep Learning Framework for Clustering and Selection of Streamlines and Stream Surfaces[J].IEEE Transactions on Visualization and Computer Graphics,2020,26(4):1732-1744.
[4]RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science(American Association for the Advancement of Science),2014,344(6191):1492-1496.
[5]TURK G,BANKS D.Image-guided streamline placement[C]//SIGGRAPH '96.ACM,1996,453-460.
[6]CHEN Y,COHEN J,KROLIK J.Similarity-Guided Streamline Placement with Error Evaluation[J].IEEE Transactions on Visualization and Computer Graphics,2007,13(6):1448-1455.
[7]YUSOFF Y A,MOHAMED F,MOKHTAR M K,et al.Magnitude-based seed point placement for streamlines generation[C]//2017 IEEE Conference on Big Data and Analytics(ICBDA).2018,2018:81-86.
[8]QIN X J,CHENG Y X,ZUO S H,et al.Streamline Placement Algorithm with Dynamic Spacing in Flow Field Controlled by Information Entropy [J].Journal of Chinese Computer System,2021,42(12):2632-2636.
[9]MARCHESIN S,CHEN C K,HO C,et al.View-DependentStreamlines for 3D Vector Fields[J].IEEE Transactions on Visualization & Computer Graphics,2010,16(6):1578-1586.
[10]MA J,WANG C,SHENE C K.Coherent view-dependent stream-line selection for importance-driven flow visualization[C]//Proceedings of SPIE.The International Society for Optical Engineering,2013,8654:1-15.
[11]QIN X,CHEN X,CHEN L,et al.Streamline Uniform Place-ment Algorithm With Dynamic Seed Points[J].IEEE Access,2019,7:113844-113852.
[12]LIU F,ZHOU W,LIU B,et al.Flow Field Description and Simplification Based on Principal Component Analysis Downscaling and Clustering Algorithms[J].Frontiers in Earth Science,2022,9:804617.
[13]JIE H,LI S,GANG S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[14]LAURENS V D M,HINTON G.Visualizing Data using t-SNE[J].Journal of Machine Learning Research,2008,9(2605):2579-2605.
[15]SCHUBERT E,SANDER J,ESTER M,et al.DBSCAN revisited,revisited:Why and how you should(still) use DBSCAN[J].ACM Transactions on Database Systems,2017,42(3):1-21.
[16]AN Y F,SHAN G H,LI G,et al.Interactive Flow Visualization Based on Super-Resolution Streamline Generation[J].Computer Systems & Applications,2021,30(10):48-58.
[17]LEE J Y,PARK J.Deep regression network-assisted efficientstreamline generation method[J].IEEE Access,2021,9:111704-111717.
[18]ZHANG W,PEI Y,LIU B,et al.A Streamline IlluminationMethod for 3D Flow Fields[C]//2013 Seventh International Conference on Image and Graphics.2013:252-257.
[19]HAN J,TAO J,ZHENG H,et al.Flow Field Reduction Via Re-constructing Vector DataFrom 3-D Streamlines Using Deep Learning[J].IEEE Computer Graphics and Applications,2019,39(4):54-64.
[20]WILSON A C,ROELOFS R,STERN M,et al.The marginalvalue of adaptive gradient methods in machine learning[C]//Advances in Neural Information Processing Systems,2017.2017:4151-4161.
[21]SUN L,JIANG M,GE Y.On theAdaptive Selection of the Cutoff Distance and Cluster Centers Based on CFSFDP[C]//Proceedings of the 38th Chinese Control Conference.2019:165-169.
[22]XU L,LEE T Y,SHEN H W.An Information-TheoreticFramework for Flow Visualization[J].IEEE Transactions on Visualization and Computer Graphics,2010,16(6):1216-1224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!