计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 221-228.doi: 10.11896/jsjkx.230500033
陈杰, 金林江, 郑红波, 秦绪佳
CHEN Jie, JIN Linjiang, ZHENG Hongbo, QIN Xujia
摘要: 流场可视化指将流体运动的数据转换为视觉形式,以便更好地理解和分析流场的流动。利用流线来实现流场可视化,是当前最为热门的方法。文中提出了一种学习、聚类三维流场流线特性的方法。首先设计了一种基于卷积的自编码器来提取流线特征。该方法中的自编码器由编码器和解码器组成,其中编码器用卷积层降维的方式来提取输入流线的特征,而解码器使用转置卷积对流线特征进行上采样,以此重建流线。通过训练不断减小输入流线与重建流线的差异,可以让编码器提取到的流线特征更加准确。其次,改进了CFSFDP算法,用于流线特征聚类。针对原CFSFDP算法需要手动选取聚类中心,以及对距离参数过于敏感的缺点,改进了其指标计算方法,实现对聚类中心的自动选取,并且引入了高斯核密度估计,实现对截断距离参数的自适应计算。实验结果表明,所提方法在流线特征的学习以及聚类上具有良好的效果。
中图分类号:
[1]SHAO X Q,CHENG Y,JIN Y Z.A review of the application of illustrative methods in 3D streamline visualization [J].Journal of Graphics,2022,43(5):753-764. [2]ZHANG Q,XIAO L.Review of Visualization Drawing Methods of Flow Field Based on Streamlines [J].Computer Science,2021,48(12):1-7. [3]HAN J,TAO J,WANG C.FlowNet:A Deep Learning Framework for Clustering and Selection of Streamlines and Stream Surfaces[J].IEEE Transactions on Visualization and Computer Graphics,2020,26(4):1732-1744. [4]RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science(American Association for the Advancement of Science),2014,344(6191):1492-1496. [5]TURK G,BANKS D.Image-guided streamline placement[C]//SIGGRAPH '96.ACM,1996,453-460. [6]CHEN Y,COHEN J,KROLIK J.Similarity-Guided Streamline Placement with Error Evaluation[J].IEEE Transactions on Visualization and Computer Graphics,2007,13(6):1448-1455. [7]YUSOFF Y A,MOHAMED F,MOKHTAR M K,et al.Magnitude-based seed point placement for streamlines generation[C]//2017 IEEE Conference on Big Data and Analytics(ICBDA).2018,2018:81-86. [8]QIN X J,CHENG Y X,ZUO S H,et al.Streamline Placement Algorithm with Dynamic Spacing in Flow Field Controlled by Information Entropy [J].Journal of Chinese Computer System,2021,42(12):2632-2636. [9]MARCHESIN S,CHEN C K,HO C,et al.View-DependentStreamlines for 3D Vector Fields[J].IEEE Transactions on Visualization & Computer Graphics,2010,16(6):1578-1586. [10]MA J,WANG C,SHENE C K.Coherent view-dependent stream-line selection for importance-driven flow visualization[C]//Proceedings of SPIE.The International Society for Optical Engineering,2013,8654:1-15. [11]QIN X,CHEN X,CHEN L,et al.Streamline Uniform Place-ment Algorithm With Dynamic Seed Points[J].IEEE Access,2019,7:113844-113852. [12]LIU F,ZHOU W,LIU B,et al.Flow Field Description and Simplification Based on Principal Component Analysis Downscaling and Clustering Algorithms[J].Frontiers in Earth Science,2022,9:804617. [13]JIE H,LI S,GANG S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2020,42(8):2011-2023. [14]LAURENS V D M,HINTON G.Visualizing Data using t-SNE[J].Journal of Machine Learning Research,2008,9(2605):2579-2605. [15]SCHUBERT E,SANDER J,ESTER M,et al.DBSCAN revisited,revisited:Why and how you should(still) use DBSCAN[J].ACM Transactions on Database Systems,2017,42(3):1-21. [16]AN Y F,SHAN G H,LI G,et al.Interactive Flow Visualization Based on Super-Resolution Streamline Generation[J].Computer Systems & Applications,2021,30(10):48-58. [17]LEE J Y,PARK J.Deep regression network-assisted efficientstreamline generation method[J].IEEE Access,2021,9:111704-111717. [18]ZHANG W,PEI Y,LIU B,et al.A Streamline IlluminationMethod for 3D Flow Fields[C]//2013 Seventh International Conference on Image and Graphics.2013:252-257. [19]HAN J,TAO J,ZHENG H,et al.Flow Field Reduction Via Re-constructing Vector DataFrom 3-D Streamlines Using Deep Learning[J].IEEE Computer Graphics and Applications,2019,39(4):54-64. [20]WILSON A C,ROELOFS R,STERN M,et al.The marginalvalue of adaptive gradient methods in machine learning[C]//Advances in Neural Information Processing Systems,2017.2017:4151-4161. [21]SUN L,JIANG M,GE Y.On theAdaptive Selection of the Cutoff Distance and Cluster Centers Based on CFSFDP[C]//Proceedings of the 38th Chinese Control Conference.2019:165-169. [22]XU L,LEE T Y,SHEN H W.An Information-TheoreticFramework for Flow Visualization[J].IEEE Transactions on Visualization and Computer Graphics,2010,16(6):1216-1224. |
|