计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500123-10.doi: 10.11896/jsjkx.230500123

• 人工智能 • 上一篇    下一篇

知识图谱的可视化文献计量分析

何静1, 赵睿1, 张恒硕2   

  1. 1 北京航空航天大学人文与社会科学高等研究院 北京 100191
    2 北京航空航天大学北航学院 北京 100191
  • 发布日期:2024-06-06
  • 通讯作者: 何静(bhhejing@buaa.edu.cn)
  • 基金资助:
    广西多源信息挖掘与安全重点实验室(MIMS22-11)

Visual Bibliometric Analysis of Knowledge Graph

HE Jing1, ZHAO Rui1, ZHANG Hengshuo2   

  1. 1 Institute for Advanced Studies in Humanities and Social Science,Beihang University,Beijing 100191,China
    2 Beihang School,Beihang University,Beijing 100191,China
  • Published:2024-06-06
  • About author:HE Jing,born in 1989,Ph.D,assistant professor.Her main research interests include big data,new media and online public opinion.
  • Supported by:
    Guangxi Key Laboratory of Multi source Information Mining and Security(MIMS22-11).

摘要: 随着网络社会不断发展,人们对信息检索提出了更高要求,知识图谱的产生和发展为其提供支持。因此知识图谱研究逐渐受到学者关注,与各领域融合的相关研究也逐渐增加。为洞察知识图谱研究历程及发展趋势,文中使用CiteSpace软件,对中国知网(CNKI)和 Web of Science(WOS)数据库中知识图谱的研究进行可视化分析,按年发文量、机构共现、作者共现、关键词共现、关键词聚类及突显词对2013-2022年的文献进行梳理。文中选取中文研究中的深度学习、人工智能、文献计量、可视化,外文研究中的社会网络分析、任务分析、数据采掘、多智能体系统为研究热点进行关键词综述。通过研究发现,现阶段知识图谱相关研究尽管呈现全面深入发展趋势,但中文研究中存在联系性不强、稳定性较弱、研究范围较窄的情况,可在后续研究中进行相应完善。

关键词: 知识图谱, CiteSpace, 可视化分析, 研究热点, 研究前沿

Abstract: With the continuous development of the network society,people put forward higher requirements for information retrieval,and the emergence and development of knowledge graph provide support for it.Therefore,the research on knowledge graph has gradually attracted the attention of scholars,and the relevant research on its integration with various fields has also gradually increased.In order to gain insight into the research process and future development trend of knowledge graph,this paper uses CiteSpace software to visually analyze the research of knowledge graph in CNKI and Web of Science(WOS) databases,and sort out the documents from 2013 to 2022 according to the number of documents issued annually,institution co-occurrence,author co-occurrence,key word co-occurrence,keyword clustering and burst words.The in-depth learning,artificial intelligence,literature metrology and visualization in Chinese research,and social network analysis,task analysis,data mining,and multi-agent system in foreign language research are selected as the research hotspots for keyword review.The study finds that at this stage,despite the trend of comprehensive and in-depth development of knowledge graph related research,the Chinese research presents a weak linkage,weak stability,and a narrow research scope,which can be continuously improved accordingly in the subsequent research.

Key words: Knowledge graph, CiteSpace, Visual analysis, Research hotspot, Research frontier

中图分类号: 

  • G206
[1]LIU Q,LI Y,DUAN H,et al.Knowledge Graph ConstructionTechniques[J].Journal of Computer Research and Development,2016,53(3):582-600.
[2]QIN G L,GAO H,WU T X.The Research Advances of Know-ledge Graph[J].Technology Intelligence Engineering,2017,3(1):4-25.
[3]AMIT S.Introducing the knowledge graph[R].America:Offi-cial Blog of Google,2012.
[4]XU Z L,SHENG Y P,HE L R,et al.Review on KnowledgeGraph Techniques[J].Journal of University of Electronic Science and Technology of China,2016,45(4):589-606.
[5]CHEN Y,CHEN C M,LIU Z Y,et al.The methodologiy function of CiteSpace mapping knowledge domains[J].Studies in Science of Science,2015,33(2):242-253.
[6]WANG S P,YUN Y J,LOTKA’S L.Price’s Law,and Chinese Mathematical Science Literature[J].Library and Information Service,1994(3):21-24.
[7]DENG Z J.AI-based Knowledge Graph Construction Technology and Its Application[J].Radio Engineering,2022,52(5):766-774.
[8]LI Z,ZHOU D D,WANG Y.Research of Educational Know-ledge Graph from the Perspective of "Artificial Intelligence+":Connotation,Technical Framework and Application[J].Journal of Distance Education,2019,37(4):42-53.
[9]JIANG Z Y,LIU X F.Progress,Hotspots,and Frontiers of "Block chain+Artificial Intelligence" Research:Knowledge Graph Analysis Based on CiteSpace[J].Science-Technology and Management,2022,24(3):1-15.
[10]ZHANG Y J,WANG F,LI Y S,et al.Remote sensing know-ledge graph creation and its typical scene application technology[ J ].Journal of Remote Sensing,2023,27(2):249-266.
[11]LIN L H,HUANG W D.Research on the Impact of Artificial Intelligence on Industrial Integration:Analysis Based on Know-ledge Graph[J].Productivity Research,2022(8):81-86.
[12]SHI L Y,YE L,TANG C.A Domestic Analysis on the 5G and AI Integration Based on Bibliometrics and Knowledge Map[J].World Sci-Tech R & D,2021,43(6):732-749.
[13]ZHAO C C,CHANG X H.Research on China’s regional smart chip technology innovation map based on patent data[J].Research on Technology Management,2023,43(5):175-186.
[14]XIA C K.Design and Implementation of a Government Know-ledge Graph Q&A System Based on Deep Learning[D].Gui-yang:Guizhou University,2022.
[15]ZHANG Y S,LIU S K,LIU Y,et al.A Survey of Joint Extraction of Entity Relations Based on Deep Learning[J].Acta Electronica Sinica,2023,51(4):1093-1116.
[16]LI W L.Research and Application of Construction Method ofHistorical Cultural Relics Knowledge Map Based on Deep Learning[D].Taiyuan:North University of China,2022.
[17]LI Y S,ZHANG Y J.A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J].Geomatics and Information Science of Wuhan University,2022,47(8):1176-1190.
[18]GUO Y,WANG X W,HE W,et al.Chinese and International Dynamic Research into Low Carbon Technology Based on Bibliometrics and Knowledge Mapping[J].Information Science,2015,33(4):139-148.
[19]LU J F,LI F,YANG Y.Bibliometric research and visual analysis of urban community emergency management[J].Chinese Journal of Safety Science,2023,33(5):199-205.
[20]SUN F,YE F.The Research Focuses and Frontier of International Government Performance Management-Bibliometric Ana-lysis Based on SSCI(2008-2017)[J].Public Administration and Policy Review,2019,8(5):82-96.
[21]TANG J M.Descriptive Research of Excellent Scientific Organizations Based on Bibliometric-Setting National Education Courses for Example[J].Journal of Intelligence,2010,29(4):5-9,35.
[22]XIE X L.Visual Analysis of Digital Literacy Research in ChinaBased on Knowledge Map[J].Library Work and Study,2022(10):67-74
[23]HU C F.Research on the Development Trend and Future Prospect of Smart Tourism Management-Visual Analysis of Know-ledge Graph Based on CiteSpace[J].Price:Theory & Practice,2022(10):103-106,213.
[24]MUNIR S,MALICK R A S,JAMI S I,et al.An integrated approach:using knowledge graph and network analysis for harnessing digital advertisement[J].Multimed Tools Appl.,2023,82:8883-8898.
[25]VIZCARRA J,KOZAKI K,TORRES RUIZ M,et al.Know-ledge-Based Sentiment Analysis and Visualization on Social Networks[J].New Generation Computing,2021,39:199-229.
[26]TALEBI S,MANOJ K,HEMANTHA KUMAR G.BuildingKnowledge Graph Based on User Tweets[J].Data Analytics and Learning,2019,43:433-443.
[27]KRISHNAN A,DAS M,BENDRE M,et al.Multi-task Know-ledge Graph Representations via Residual Functions[J].Advances in Knowledge Discovery and Data Mining,2022,13280:262-275.
[28]HE Z,WANG H,ZHANG X.Multi-Task Learning ModelBased on BERT and Knowledge Graph for Aspect-Based Sentiment Analysis[J].Electronics,2023,12,737.
[29]WANG X,GAO C,CAO J,et al.ALTAS:An Intelligent Text Analysis System Based on Knowledge Graphs[J].Web and Big Data,2018,10987:466-470.
[30]LAM M,USCALDI D,COCHEZ M,et al.Knowledge graph embedding for data mining vs.knowledge graph embedding for link prediction-two sides of the same coin?[J].Semant.web,2022,13(3):399-422.
[31]SHARAFELDEEN D,ALGERGAWY A,KÓNIG-RIES B,et al.Towards Knowledge Graph Construction using Semantic Data Mining[C]//The Proceedings of the 21st International Conference on Information Integration and Web-based Applications &Services.New York:Association for Computing Machinery,2019:323-329.
[32]CHENG B Y,ZHANG Y,CAI D J,et al.Construction of traditional Chinese medicine Knowledge Graph using Data Mining and Expert Knowledge[C]//The Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content.Guiyang.2018:209-213.
[33]LI X,SHEN Y,CHEN L.Mcore:Multi-Agent Collaborative Learning for Knowledge-Graph-Enhanced Recommendation[C]//The Proceedings of the 2021 IEEE International Confe-rence on Data Mining.Auckland.2021:330-339.
[34]KOLONIN A.Distributed Knowledge Engineering and Evi-dence-Based Knowledge Representation in Multi-agent Systems[C]//International Conference on Knowledge Engineering and the Semantic Web.2015.
[35]LI Z,JIN X,GUAN S,et al.Path Reasoning over Knowledge Graph:A Multi-agent and Reinforcement Learning Based Me-thod[C]//The Proceedings of the 2018 IEEE International Conference on Data Mining Workshops.Singapore,2018:929-936.
[36]WANG X,TANG Y,WANG H F,et al.Knowledge EngineeringEnabled by Knowledge Graph:Theory,Technology and Systems[J].Computer Science,2023,50(3):1-2.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!