计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 412-419.doi: 10.11896/jsjkx.230500227
陈宏伟, 尹小康, 盖贤哲, 贾凡, 刘胜利, 蔡瑞杰
CHEN Hongwei, YIN Xiaokang, GAI Xianzhe, JIA Fan, LIU Shengli, CAI Ruijie
摘要: 反射放大攻击因具有优质的流量倍增能力和反追踪溯源能力正逐步成为主流的DDoS攻击手段。近年来不断涌现以OpenVPN等物联网协议为代表的新型UDP反射放大攻击方法,并且呈现出多协议组合反射放大的趋势。然而,当前UDP反射放大检测方法存在检测结果不准确、检测效率不足等问题。针对上述问题,为提升UDP反射放大检测能力,提出了一种基于主被动结合的新型UDP反射放大协议识别方法。首先,通过主动探测的方法获取已知的物联网反射放大协议流量,并将其作为实验数据集;其次,在流量自动化分析过程中使用双重阈值判定和多元特征匹配方法捕获未知的反射放大协议和触发方式;最后,通过重放的方式进行验证。实验结果表明,该方法可有效检测UDP反射放大流量,精度达到99.88%,并且发现了QUIC协议潜在的反射放大能力,有效提升了反射放大攻击的防护能力。
中图分类号:
[1]SRINIVAS P.Are You Ready to Counter UDP-Based Amplification Attacks? [EB/OL].(2018-03-27) [2023-03-22].https://blogs.infoblox.com/company/are-you-ready-to-counter-udp-based-amplification-attacks/. [2]MATTHEW P.The DDoS That Knocked Spamhaus Offline(And How We Mitigated It) [EB/OL].(2013-03-21) [2023-03-22].https://laptrinhx.com/the-ddos-that-knocked-spamhaus-offline-and-how-we-mitigated-it-542830916/. [3]ALEX F.CVE-2022-26143:TP240PhoneHome reflection/am-plification DDoS attack vector [EB/OL].(2022-03-08) [2023-03-22].https://blog.cloudflare.com/cve-2022-26143/. [4]CHRISTIAN R.Amplification Hell,Revisiting Network Proto-cols for DDoS Abuse [C]//Proceedings of the 2014 Network and Distributed Systems Security Symposium(NDSS 2014).2014:23-26. [5]LI G.Research of scanning and drdos attack detection based on netflow[D].Nanjing:Southeast University,2016. [6]LUX T,CAI R J,LIU S L.Discovery of unknown UDP reflection amplification protocol based on traffic analysis [J].Computer Science,2022,49(S2):211000089-5. [7]OTHMAN R.Understanding the various types of denial of ser-vice attack [J].Business Week Online,2000. [8]PAXSON V.An analysis of using reflectors for distributed de-nial-of-service attacks [J].ACM SIGCOMM Computer Communication Review,2001,31(3):38-47. [9]KEVIN B,ABDULRAHMAN A,YAIR F,et al.Weaponizing Middleboxes for TCP Reflected Amplification [C]//30th USENIX Security Symposium(USENIX Security 2021).2021:3345-3361. [10]SOO-JIN M,YINY C,RAHUL A S,et al.Accurately Measu-ring Global Risk of Amplification Attacks using Amp Map [C]//30th USENIX Security Symposium(USENIX Security 2021).2021:3881-3898. [11]JOHANNES K,ILYA G,CHRISTIAN R.AMPFUZZ:Fuzzing for Amplification DDoS Vulnerabilities [C]//31th USENIX Security Symposium(USENIX Security 2022).2022:1043-1060. [12]IMAN S,ARASH H L,SAQIB H,et al.Developing RealisticDistributed Denial of Service(DDoS) Attack Dataset and Taxo-nomy [C]//2019 International Carnahan Conference on Secu-rity Technology(ICCST).IEEE,2019. [13]HUSSAIN Y S.Network Intrusion Detection for DistributedDenial-of-Service(DDoS) Attacks using Machine Learning Classification Techniques [D].Toronto:University of Toronto,2011. [14]MATHEUS P N,LUIZ F C,JAIME L,et al.Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment [C]//IEEE Access.IEEE,2020:83765-83781. [15]SAIF R,MUBASHIR K,SYED I I,et al.DIDDOS:An approach for detection and identification of Distributed Denial of Service(DDoS) cyberattacks using Gated Recurrent Units(GRU) [J].Future Generation Computer Systems,2021,118:453-466. |
|