计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 209-216.doi: 10.11896/jsjkx.230600050
高文斌
GAO Wenbin
摘要: 频率步进合成孔径雷达(Synthetic Aperture Radar,SAR)的系统传递函数中存在幅度和相位误差(Magnitude Error and Phase Error,MEPE),通过宽带合成操作在距离宽带信号中引入了周期性MEPE,从而导致宽带合成后的高分辨率距离像(HRRP)中出现周期性栅瓣。经过后续SAR成像处理,这些周期性栅瓣在图像中表现为虚假目标,严重影响SAR图像目标的检测与识别。为此,基于SAR图像的栅瓣抑制(Grating Lobe Suppression,GLS)算法被提出,其基于点状目标假设,利用SAR图像中的强点目标实现图像栅瓣的有效抑制。然而,对于非点状目标场景,已有基于SAR图像的GLS算法的性能显著下降,而且会引起图像散焦。因此,文中提出了一种基于目标信息差异的GLS算法,取名为目标信息差异法。该算法不基于点状目标假设,通过估计宽带合成后的理想HRRP与实际HRRP之间的信息差异,稳健地估计出合成宽带信号中的周期性MEPE。通过补偿该周期性MEPE,该算法可以将频率步进SAR距离向栅瓣抑制到图像的背景水平。通过对不同GLS算法进行性能对比发现,所提GLS算法受图像信杂比影响小,且同时适用于非点状目标和点状目标场景,相比已有GLS算法具有明显的优势。实测数据处理结果证明了所提方法的有效性和相对已有GLS算法的优越性。
中图分类号:
[1]ZANDIEH A,BONEN S,DADASHM S,et al.155 GHz FMCW and Stepped-Frequency Carrier OFDM Radar Sensor Transcei-ver IC Featuring a PLL With <30 ns Settling Time and 40 fs rms Jitter [J].IEEE Transactions on Microwave Theory and Techniques,2021,69(11):4908-4924. [2]LIU S,CAO Y,YEOT S,et al.Range Sidelobe Suppression forRandomized Stepped-Frequency Chirp Radar [J].IEEE Tran-sactions on Aerospace and Electronic Systems,2021,57(6):3874-3885. [3]JOHNSTON J,LI Y,LOPS M,et al.ADMM-Net for Communi-cation Interference Removal in Stepped-Frequency Radar [J].IEEE Transactions on Signal Processing,2021,57(3):1657-1671. [4]YOO K,CHOI B G,CHU N J.Rotating Target Size and Rotation Vector Estimation in a Distributed Stepped Frequency Radar System [J].IEEE Sensors Journal,2020,20(13):7189-7198. [5]WANG C,ZHANG Q,HU J,et al.An Efficient AlgorithmBased on Frequency Scaling for THz Stepped-Frequency SAR Imaging[J/OL].https://ieeexplore.ieee.org/document/9295364. [6]DAI G,ZHANG L,HUAN S,et al.Random Stepped-Frequency SAR Imagery With Full Cell Doppler Coherent Processing[J/OL].https://ieeexplore.ieee.org/document/9345702. [7]JING G B,SUN G C,XIA X G,et al.A Novel Two-Step Approach of Error Estimation for Stepped-Frequency MIMO-SAR [J].IEEE Geoscience and Remote Sensing Letters,2017,14(12):2290-2294. [8]FERDOUSM S,HIMIU H,MCGUIRE P,et al.Assessing the Usefulness of Iceberg Electromagnetic Backscatter Modeling Using a C-Band SAR Classifier [J].IEEE Geoscience and Remote Sensing Letters,2020,17(8):1353-1357. [9]SHAHZAD M,MAURER M,FRAUNDORFER F,et al.Buil-dings Detection in VHR SAR Images Using Fully Convolution Neural Networks [J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(2):1100-1116. [10]SUN X,WU Y,ZHANG L,et al.Stepped Frequency Waveform Optimization for Formation Targets Detection [J/OL].https://ieeexplore.ieee.org/document/9774335. [11]DING Z,LI L,WANG Y,et al.An Autofocus Approach forUAV-Based Ultrawideband Ultrawidebeam SAR Data With Frequency-Dependent and 2-D Space-Variant Motion Errors[J/OL].https://ieeexplore.ieee.org/document/9380507. [12]DING M L,DING C B,TANG L,et al.A W-Band 3-D IntegratedMini-SAR System With High Imaging Resolution on UAV Platform [J].IEEE Access,2020,8:113601-113609. [13]XU W,XIANG M,WANG B,et al.Study on the Pivotal Imaging Technology of Mini SAR on UAV[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.2021:3936-3939. [14]WEHNER D R.High Resolution Radar [M]//Boston,MA.USA:ArtechHouse,1994. [15]DENG Y K,ZHENG H F,WANG R.Internal Calibration for Stepped-Frequency Chirp SAR Imaging[J].IEEE Geoscience and Remote Sensing Letters,2011,8(6):1105-1109. [16]WANG X Y,WANG R,DNEG Y K,et al.Precise Calibration of Channel Imbalance for Very High Resolution SAR With Stepped Frequency[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(8):4252-4261. [17]DING Z G,GAO W B,LIU J Y,et al.A Novel Range Grating Lobe Suppression Method Based on the Stepped-Frequency SAR Image[J].IEEE Geoscience and Remote Sensing Letters,2015,12(3):606-610. [18]GAO W,LONG T,DING Z,et al.A Robust Range GratingLobe Suppression Method Based on Image Contrast for Stepped-Frequency SAR[J].Sensors,2016,16(12):2066. [19]DING Z,GUO Y,GAO W,et al.A Range Grating Lobes Suppression Method for Stepped-Frequency SAR Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2016,12(9):5677-5687. |
|