计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600138-7.doi: 10.11896/jsjkx.230600138
娄刃1, 和任强2, 赵三元2,3, 郝昕2, 周跃琪1, 汪心渊1, 李方芳4
LOU Ren1, HE Renqiang2, ZHAO Sanyuan2,3, HAO Xin2, ZHOU Yueqi1, WANG Xinyuan1, LI Fangfang4
摘要: 无监督“可见光-红外”跨模态行人重识别任务能够缓解智能监控场景中需要大量人工标注的问题。常见多阶段模型用于处理不同模态数据。文中提出了一种有效的单阶段无监督跨模态行人重识别的方法,设计了基于置信因子的聚类算法和图嵌入的跨模态特征处理方法,分别用于解决无标签问题和跨模态问题。实验结果表明,相较于现有算法,所提方法在r=1时精度至少取得了7%的提高。
中图分类号:
[1]LIN Y,DONG X,ZHENGL,et al.A bottom-up clustering approach to unsupervised person reidentification[C]//AAAI.2019:8738-8745. [2]LIN Y,XIE L,WU Y,et al.Unsupervisedperson re-identificationvia softened similaritylearning[C]//CVPR.2020:3390-3399. [3]ZENG K,NING M,WANG Y,et al.Hierarchical ClusteringWith Hard-Batch Triplet Loss for Person Re-Identification[C]//CVPR.2020:13657-13665. [4]YANG B,YE M,CHEN J,et al.Augmented Dual Contrastive Aggregation Learning for Unsupervised Visible-Infrared Person Re-Identification[C]//Proceedings of the 30th ACM International Conference on Multimedia(MM’22).2022. [5]LIANG W,WANG G,LAIJ,et al.Homogeneous-to-Heterogeneous:Unsupervised Learning for RGB-Infrared Person Re-Identification[C]//IEEE Transactions on Image Processing.2021:6392-6407. [6]HARDOON D R,SZEDMAK S,SHAWE-TAYLOR J.Canonical correlation analysis:An overview with application to learning methods[J].Neural Computation,2004,16(12):2639-2664. [7]RASIWASIA N,PEREIRA J C,COVIELLO E,et al.A new approach to cross-modal multimedia retrieval[C]//ACM MM,2010:251-260. [8]ANDREW G,ARORA R,BILMES J,et al.Deep canonical correlation analysis[C]//ICML,2013:1247-1255. [9]FENG F,WANG X,LI R.Cross-modal retrieval with correspondence autoencoder[C]//ACM MM.2014:7-16. [10]ZHAN Y,YU J,YU Z,et al.Comprehensive distance-preserving autoencoders for cross-modal retrieval[C]//ACM MM.2018:1137-1145. [11]HE L,XU X,LU H,et al.Unsupervised cross-modal retrievalthrough adversarial learning[C]//ICME.2017:1153-1158. [12]CHUNG Y A,WENG W H,TONG S,et al.Unsupervisedcross-modal alignment of speech and textembedding spaces[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems(NIPS’18).2018:7365-7375. [13]LI C,DENG C,LI N,et al.Self-super visedadversarial hashing networks fo rcross modal retrieval[C]//CVPR.2018:4242-4251. [14]WANG B,YANG Y,XU X,et al.Adversarial cross-modal re-trieval[C]//ACM MM,2017:154-162. [15]YAN S,XU D,ZHANG B,et al.Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE TPAMI,2006,29(1):40-51. [16]MORSING L H,SHEIKH-OMARO A,IOSIFIDIS A.Supervised domain adaptation:A graph embedding perspective and a rectified experimental protocol[J].arXiv:2004.11262,2020. [17]MOON H,PHILLIPSP J.Computational and performance as-pects of PCA-based face-recognition algorithms[J].Perception,2001,30(3):303-321. [18]YU S,LI S,CHEN D,et al.COCAS:A Large-Scale Clothes Changing Person Dataset for ReIdentification[C]//CVPR.2020:3400-3409. [19]SONG L,WANG C,ZHANG L,et al.Unsupervised domainadaptive re-identification:Theory and practice[J].Pattern Re-cognition,2020,102:107173. [20]ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-imagetranslation using cycle-consistent adversarial networks[C]//ICCV.2017:2223-2232. [21]FU Y,WEI Y,WANG G,et al.Self-similarity grouping:A simple unsupervised cross domain adaptation approach for person re-identification[C]//ICCV.2019:6112-6121. [22]ZHONG Z,ZHENG L,LUO Z,et al.Invariance matters:Exemplar memory for domain adaptive person re-identification[C]//CVPR.2019:598-607. [23]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//CVPR.2005:886-893. [24]XIONG F,GOU M,CAMPS O,et al.Person re-identificationusing kernel-based metric learning methods[C]//ECCV.2014:1-16. [25]MATSUKAWA T,OKABE T,SUZUKIE,et al.Hierarchicalgaussian descriptor for person re-identification[C]//CVPR.2016:1363-1372. |
|