计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 121-128.doi: 10.11896/jsjkx.230700045

• 计算机图形学&多媒体 • 上一篇    下一篇

一种用于视觉跟踪的低秩上下文感知的相关滤波器

苏银强1,2, 王宣1, 王淳3, 李充3, 徐芳1   

  1. 1 中国科学院长春光学精密机械与物理研究所 长春 130000
    2 中国科学院大学 北京 100049
    3 中国人民解放军空军装备部驻沈阳地区军事代表局驻长春地区军事代表室 长春 130000
  • 收稿日期:2023-07-07 修回日期:2023-10-10 出版日期:2024-09-15 发布日期:2024-09-10
  • 通讯作者: 王宣(lly637@163.com)
  • 作者简介:(suyinqiang18@mails.ucas.ac.cn)
  • 基金资助:
    国家自然科学基金面上项目(62175233);吉林省自然科学基金面上项目(20220101111JC)

Correlation Filter Based on Low-rank and Context-aware for Visual Tracking

SU Yinqiang1,2, WANG Xuan1, WANG Chun3, LI Chong3, XU Fang1   

  1. 1 Changchun Institute of Optics,Fine Mechanics and Physics(CIOMP),Chinese Academy of Sciences,Changchun 130000,China
    2 University of Chinese Academy of Science,Beijing 100049,China
    3 The First Military Representative Office of the Military Representative Bureau of the Army Equipment Department of the Chinese People's Liberation Army in ChangchunShenyang,Changchun 130000,China
  • Received:2023-07-07 Revised:2023-10-10 Online:2024-09-15 Published:2024-09-10
  • About author:SU Yinqiang,born in 1997,Ph.D.His main research interests include visual target tracking and QT-based aviation information processing.
    WANG Xuan,born in 1984,Ph.D.associate researcher.His main research interests include airborne photoelectric imaging measurement equipment and so on.
  • Supported by:
    General Program of National Natural Science Foundation of China(62175233) and General Program of Natural Science Foundation of Jilin Province,China(20220101111JC).

摘要: 基于DCF的目标跟踪方法在保持实时运行时,由于在精度和鲁棒性之间实现了很好的权衡而备受关注。但是,当出现遮挡、移出视野、平面外旋转等干扰时,现有跟踪器仍面临着模型漂移甚至跟踪失败的情况。为此,提出了一种基于低秩上下文感知的相关滤波器LR_CACF。具体来说,在滤波器学习阶段,直接将目标及其上下文信息集成到DCF框架中,以更好地将目标从背景中鉴别出来;同时,对跨帧视频施加低秩约束以强调时序平滑性,使得学习的滤波器处于一个低维的鉴别流行上,进一步提高了跟踪性能;然后,利用ADMM实现滤波模型的高效优化;此外,针对模型失真的问题,启动多模态检测机制来识别响应图的可靠性,当反馈不可靠时,滤波器停止训练,同时扩大搜索区域,并采用区域重叠的方法重新捕获目标。在OTB-50,OTB-100和DTB70数据集上进行了大量实验,实验结果表明,相对于基线SAMF_CA,在DP方面,LR_CACF分别获得了6.9%,4.0%和7.1%的增益,AUC分别提高了3.6%,2.7%和5.4%。基于属性分析的结果表明,LR_CACF尤其擅长处理遮挡、移出视野、平面外旋转、低分辨率和快速运动等场景。

关键词: 视觉跟踪, 相关滤波, 低秩约束, 上下文感知, 重检测

Abstract: Discriminative correlation filter(DCF)-based visual tracking approaches have attracted remarkable attention due to their good tradeoff between accuracy and robustness while running at real-time.However,the existing trackers still face model drift and even tracking failure situation when there are interferences such as long-term occlusion,out-of-view and out-of-plane rotation.To this end,we propose a low-rank and context-aware correlation filter(LR_CACF).Specifically,we directly integrate the target and its global contexts into DCF framework during filter learning stage to better discriminate the target from surrounding.Meanwhile,the low-rank constraint is injected across frames to emphasize the temporal smoothness,so that the learned filter is retained in a low-dimensional discriminant manifold to further improve tracking performance.Then,the ADMM is used to optimize the model effectively.Moreover,for model distortion,the multimodal detection mechanism is utilized to identify anomaly in the response.The filter stops training while extends the search regions to recapture the target when feedback is unreliable.Finally,extensive experiments are conducted on OTB50,OTB100 and DTB70 datasets,and the results demonstrate that,compared with the baseline SAMF_CA,LR_CACF achieves gains of 6.9%,4.0% and 7.1% in DP,respectively,and the average AUC improves by 3.6%,2.7% and 5.4%,respectively.Meanwhile,attribute-based evaluation shows that the proposed tracker is parti-cularly adept at handling the scenes such as occlusion,out-of-view,out-of-plane rotation,low resolution,and fast motion.

Key words: Visual tracking, Correlation filter, Low-rank, Context-aware, Redetection

中图分类号: 

  • TP394.1
[1]YANG Y,GU X.Joint Correlation and Attention Based Feature Fusion Network for Accurate Visual Tracking [J].IEEE Tran-sactions on Image Processing,2023,32:1705-1715.
[2]JAVED S,DANELLJAN M,KHAN F S,et al.Visual ObjectTracking With Discriminative Filters and Siamese Networks:A Survey and Outlook [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(5):6552-6574.
[3]ZHU X F,WU X J,XU T,et al.Robust Visual Object Tracking Via Adaptive Attribute-Aware Discriminative Correlation Filters [J].IEEE Transactions on Multimedia,2022,24:301-312.
[4]MARVASTI-ZADEH S M,CHENG L,GHANEI-YAKHDAN H,et al.Deep Learning for Visual Tracking:A Comprehensive Survey [J].IEEE Transactions on Intelligent Transportation Systems,2022,23(5):3943-3968.
[5]DU S,WANG S.An Overview of Correlation-Filter-Based Object Tracking [J].IEEE Transactions on Computational Social Systems,2022,9(1):18-31.
[6]HU W,WANG Q,ZHANG L,et al.SiamMask:A Frameworkfor Fast Online Object Tracking and Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(3):3072-3089.
[7]HAN G,SU J,LIU Y,et al.Multi-Stage Visual Tracking With Siamese Anchor-Free Proposal Network [J].IEEE Transactions on Multimedia,2023,25:430-442.
[8]HENRIQUES J F,CASEIRO R,MARTINS P,et al.High-Speed Tracking with Kernelized Correlation Filters [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-596.
[9]MA C,HUANG J B,YANG X,et al.Robust Visual Tracking via Hierarchical Convolutional Features [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(11):2709-2723.
[10]LI Y,ZHU J.A Scale Adaptive Kernel Correlation Filter Tra-cker with Feature Integration[C]//Proceedings of the Computer Vision- ECCV 2014 Workshops.Springer International Publi-shing,2015.
[11]DANELLJAN M,HÄGER G,KHAN F S,et al.Discriminative Scale Space Tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):1561-1575.
[12]GALOOGAHI H K,FAGG A,LUCEY S.Learning Back-ground-Aware Correlation Filters for Visual Tracking[C]//2017 IEEE International Conference on Computer Vision(ICCV).2017:1144-1152.
[13]DANELLJAN M,HÄGER G,KHAN F S,et al.Learning Spatially Regularized Correlation Filters for Visual Tracking[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV).2015:4310-4318.
[14]BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual Object Tracking using Adaptive Correlation Filters[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010:2544-2550.
[15]HENRIQUES J F,CASEIRO R,MARTINS P,et al.Exploitingthe Circulant Structure of Tracking-by-Detection with Kernels[C]//Proceedings of the Computer Vision-ECCV.2012:702-715.
[16]LIU T,WANG G,YANG Q.Real-time part-based visual tra-cking via adaptive correlation filters[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:4902-4912.
[17]DANELLJAN M,ROBINSON A,KHAN F S,et al.BeyondCorrelation Filters:Learning Continuous Convolution Operators for Visual Tracking [C]//Computer Vision-ECCV.2016:472-488.
[18]DANELLJAN M,BHAT G,KHAN F S,et al.ECO:EfficientConvolution Operators for Tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:6931-6939.
[19]MUELLER M,SMITH N,GHANEM B.Context-Aware Correlation Filter Tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:1387-1395.
[20]LI F,TIAN C,ZUO W,et al.Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:4904-4913.
[21]LI Y,FU C,DING F,et al.AutoTrack:Towards High-Perfor-mance Visual Tracking for UAV with Automatic Spatio-Temporal Regularization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:11920-11929.
[22]JAIN M,TYAGI A,SUBRAMANYAM A V,et al.ChannelGraph Regularized Correlation Filters for Visual Object Tra-cking[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(2):715-729.
[23]ZHANG J,HE Y,WANG S.Learning Adaptive Sparse Spatially-Regularized Correlation Filters for Visual Tracking [J].IEEE Signal Processing Letters,2023,30:11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!