计算机科学 ›› 2024, Vol. 51 ›› Issue (1): 215-224.doi: 10.11896/jsjkx.230700209

• 计算机图形学&多媒体 • 上一篇    下一篇

基于观测数据的地表太阳形状B-样条函数模型

沈童, 赵乐, 冯结青   

  1. 浙江大学计算机辅助设计与图形系统全国重点实验室 杭州310058
  • 收稿日期:2023-07-27 修回日期:2023-10-08 出版日期:2024-01-15 发布日期:2024-01-12
  • 通讯作者: 冯结青(jqfeng@cad.zju.edu.cn)
  • 作者简介:(12221043@zju.edu.cn)
  • 基金资助:
    国家自然科学基金(62272408,61772464)

B-spline Functional Model of Terrestrial Sunshape Based on Measured Data

SHEN Tong, ZHAO Le, FENG Jieqing   

  1. State Key Laboratory of CAD&CG,Zhejiang University,Hangzhou 310058,China
  • Received:2023-07-27 Revised:2023-10-08 Online:2024-01-15 Published:2024-01-12
  • About author:SHEN Tong,born in 1999,,Ph.D,is a member of CCF(No.E6427G).His main research interests include computer-aided geometric design,solar modeling and simulation.
    FENG Jieqing,born in 1970,Ph.D,professor,Ph.D supervisor,is a distinguished member of CCF(No.06723D).His mian research interests include geometric modeling,real-time rendering,stereo vision,modeling and simulation in solar thermal power.
  • Supported by:
    National Natural Science Foundation of China(62272408,61772464).

摘要: 描述地面上接收太阳辐射能分布的函数被称为地表太阳形状模型。它对塔式光热太阳能发电中接收器上辐射能密度分布的精确仿真至关重要。光晕辐射能占太阳辐射总能量的百分比,也被称为光晕辐射能占比(CircumSolar Ratio,CSR),它是地表太阳形状模型中的一个重要参数。目前,常用的地表太阳形状模型普遍存在精度不高、计算所得CSR 无法与输入CSR对齐、辐射能分布不连续、模型函数不能解析积分等不足。针对这些问题,文中提出了基于观测数据拟合的地表太阳形状张量积B-样条函数模型。首先,对两个观测数据集进行数据清洗、去噪、归一化、分组平均和拼接,得到具有不同CSR值、随入射角度偏移θ变化的84组太阳辐射能扫描剖面数据;其次,选择变化最剧烈的CSR为0.005这组数据,以θ为自变量,进行带约束的B-样条函数拟合(二次规划问题),拟合过程中,通过差分进化算法优化节点向量,并通过实验确定最优控制系数的数量;然后,采用上述节点向量、控制系数数量,以相同的方式拟合其他CSR值的83组数据;最后,将所得84个单变量B-样条函数模型作为输入,以CSR为自变量对其控制系数进行拟合,并类似地确定节点向量和控制系数数目,最终得到以CSR和θ为自变量、具有12×15个控制系数的张量积B-样条函数模型,即地表太阳形状模型。与已有模型相比,该B-样条函数模型是一个C2光滑的模型,具有 CSR 对齐、拟合精度高和辐射能分布可解析积分的优点。

关键词: 太阳形状模型, CSR对齐, B-样条函数拟合, 二次规划, 差分进化算法

Abstract: The function describing the distribution of solar radiative energy received on the ground is called the surface sunshape model.It is important for accurate simulation of the distribution of radiative flux density on the receiver in solar power tower.The percentage of halo radiative energy to the total solar radiative energy is called the CircumSolar Ratio(CSR),which is a key para-meter in the surface sunshape model.At present,the commonly used surface sunshape models have drawbacks of low accuracy,CSR misalignment,discontinuity,and not being integrated analytically.To address these problems,a new sunshape model in terms of tensor product B-spline function is proposed based on observation dataset.Firstly,the two observation datasets are processed via data cleaning,de-noise,normalization,average,and data concatenation.As a result,84 sets of data with different CSR values are obtained.Each set of data corresponds a solar radiative solar energy scanning profile,and varies with incident angle θ.Then,the data set of CSR=0.005 with the most drastic change is chosen as the sample case for constrained B-spline function fitting,whose knot vector and number of control coefficients are determined through differential evolution algorithm and experiments,respectively.Then,the other 83 sets of data corresponding to 83 CSR values are fitted using the above knot vector and the number of control coefficients.Finally,the 84 univariate B-spline functions are adopted as inputs,and CSR value is used as variable to perform B-spline fitting on their control coefficients.The knot vector and the number of control vertices are still determined using the above methods.As a result,a surface sunshape model is obtained,which is in terms of tensor product B-spline function with 12×15 control coefficients,and variables CSR and θ.Compared with existing models,the proposed B-spline function model is C2 continuous,which has the advantages of CSR alignment,high fitting accuracy,and analytical integration of radiative energy distribution.

Key words: Sunshape model, CSR alignment, B-spline function fitting, Quadratic programming, Differential evolution algorithm

中图分类号: 

  • TP391
[1]ABREU E,CANHOTO P,COSTA M J.Development of a clear-sky model to determine circumsolar irradiance using widelyavailable solar radiation data[J].Solar Energy,2020,205:88-101.
[2]BLANC P,ESPINAR B,GEUDER N.Direct normal irradiance related definitions and applications:The circumsolar issue[J].Solar Energy,2014,110(110):561-577.
[3]EISSA Y,BLANC P,OUMBE A,et al.Estimation of the cir-cumsolar ratio in a turbid atmosphere[J].Energy Procedia.2014,57:1169-1178.
[4]PULIAEV S,PENNA J L,JILINSKI E G.Solar diameter observations at observatório nacional in 1998-1999[J].Astronomy and Astrophysics Supplement Series,2000,143(2):265-267.
[5]WILBERT S.Determination of circumsolar radiation and itseffect on concentrating solar power[D].Aachen:RWTH Aachen University,2014.
[6]DELGADO A,RON R,BLESA E.Impact of the sunshape variability on the performance of a central receiver system[J].Energy Procedia,2015,69:70-76.
[7]LEARY P L,HANKINS J D.A user’s guide for mirval:A computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants[R].Technical report,Albuquerque:Sandia National Laboratories,1979.
[8]ORTEGA G,ROVIRA A.A fast and accurate methodology for the calculation of the shading and blocking efficiency in central receiver systems[J].Renewable Energy,2020,154:58-70.
[9]ZOU B,JIANG Y,YAO Y,et al.Optical performance of parabolic trough solar collectors under condition of multiple optical factors[J].Applied Thermal Engineering,2019,160:114070.
[10]ZOU B,JIANG Y,YAO Y,et al.A detailed study on the effects of sunshape and incident angle on the optical performance of parabolic trough solar collectors[J].Applied Thermal Enginee-ring,2017,126:81-91.
[11]SEVERINO G.The Structure and Evolution of the Sun[M].Cham:Springer,2017.
[12]CRUZ N C,REDONDO J L,BERENGUEL M.Review of software for optical analyzing and optimizing heliostat fields[J].Renewable and Sustainable Energy Reviews,2017,72:1001-1018.
[13]GARCÍA P,FERRIÈRE A,BEZIAN J J.Codes for solar flux calculation dedicated to central receiver system applications:A comparative review[J].Solar Energy,2008,82(3):189-197.
[14]HE C,FENG J,ZHAO Y.Fast flux density distribution simulation of central receiver system on GPU[J].Solar Energy,2017,144:424-435.
[15]HE C,FENG J,ZHAO Y.An improved flux density distribution model for a flat heliostat(iHFLCAL) compared with HFLCAL[J].Energy,2019,189:1-19.
[16]LANDMAN W A.Optical performance of the reflective surface profile of a heliostat[D].Stellenbosch:Stellenbosch University,2017.
[17]JENSEN H W,ARVO J,DUTRE P.Monte Carlo ray tracing[C]//ACM SIGGRAPH Course Notes.San Diego,CA,USA,2003,5:27-31.
[18]BENDT P,RABL A.Optical analysis of point focus parabolic radiation concentrators[J].Applied optics,1981,20(4):674-683.
[19]WINTER C J,SIZMANN R L,VANT-HULL L L.Solar Power Plants:Fundamentals,Technology,Systems,Economics[M].Heidelberg:Springer,1991.
[20]HUNT A J.NORING J E,GRETHER D F.Circumsolar radiation data:The Lawrence Berkeley laboratory reduced data base,final subcontract report[R].Technical Report,California:Lawrence Berkeley Laboratory,1991.
[21]BUIE D,DEY C,BOSI S.The effective size of the solar cone for solar concentrating systems[J].Solar Energy,2003,74(5):417-427.
[22]BUIE D,MONGER A G,DEY C J.Sunshape distributions for terrestrial solar simulations[J].Solar Energy,2003,74(2):113-122.
[23]NEUMANN A,WITZKE A,JONES S A.Representative terrestrial solar brightness profiles[J].Energy Procedia,2002,124(2):198-204.
[24]WANG Y,POTTER D,ASSELINEAU C A.Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems[J].Solar Energy,2019,195:461-474.
[25]CARDOSO J,MUTUBERRIA J,MARAKKO A,et al.Newfunctionalities for the Tonatiuh ray-tracing software[C]//Proceedings of the 23rd SolarPACES Conference.2017.
[26]HUANG W,HU P,CHEN Z.Performance simulation of a para-bolic trough solar collector[J].Solar Energy,2012,86(2):746-755.
[27]PIEGL L,TILLER W.The NURBS Book(2nd edition)[M].Berlin,Heidelberg:Springer-Verlag,1997.
[28]NEUMANN A,AU B.Sunshape measurements at the DLR solar furnace site in Cologne,Germany[C]//Solar Energy Forum,ASME.Washington DC,USA,April DLR,1997.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!