计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700229-5.doi: 10.11896/jsjkx.230700229

• 交叉&应用 • 上一篇    下一篇

改进NDO的板球系统自适应滑模抗扰控制

杨立炜1, 李萍1, 夏国锋2, 王涛1   

  1. 1 新疆理工学院信息工程学院 新疆 阿克苏 843000
    2 中国电建集团昆明勘测设计研究院 昆明 650033
  • 发布日期:2024-06-06
  • 通讯作者: 夏国锋(3105192457@qq.com)
  • 作者简介:(liwei.yang1003@qq.com)
  • 基金资助:
    国家自然科学基金(61163051)

Adaptive Sliding Mode Disturbance Rejection Control for Cricket System of Improved NDO

YANG Liwei1, LI Ping1, XIA Guofeng2, WANG Tao1   

  1. 1 School of Information Engineering,Xinjiang Institute of Technology,Aksu,Xinjiang 843000,China
    2 Power Construction Corporation of China Kunming Research Institute,Kunming 650033,China
  • Published:2024-06-06
  • About author:YANG Liwei,born in 1997,master.His main research interest is intelligent optimal control.
    XIA Guofeng,born in 1996,master,researcher.His main research interests include complex networks and neural networks.
  • Supported by:
    National Natural Science Foundation of China(61163051).

摘要: 为解决板球系统因受到外部负载扰动、摩擦力、交叉耦合干扰等不确定性扰动而跟踪精度不高的问题,提出一种基于改进的非线性干扰观测器(NDO)和非线性信息增益滑模控制策略。利用预设性能函数(PPF)对误差的变换技术,将误差限定在规定范围内,建立改进的NDO来估计不确定性扰动。运用精确的估计值来设计滑模控制器,滑模面包含一个修正项,可以降低扰动的影响,从而提高控制精度,并采用非线性信息增益设计自适应切换项增益,降低抖振的影响。最后,仿真表明改进的NDO能有效地估计扰动,改善了动态品质,所提控制方案提高了传统的NDO的控制精度和抗扰能力。

关键词: 板球系统, 预设性能函数, 非线性干扰观测器, 不确定性扰动, 滑模控制

Abstract: To address the challenge of achieving high-precision tracking in a ball and plate system subject to uncertain distur-bances such as external loads,friction,and cross-coupling interference,this paper proposes an enhanced approach that combines an improved nonlinear disturbance observer(NDO) and a nonlinear information gain sliding mode control strategy.Utilizing error transformation techniques based on a prescribed performance function(PPF),we constrain the error within specified bounds,and introduce the improved NDO to estimate the uncertain disturbances accurately.We leverage the precise estimation to design a sliding mode controller with a corrective term on the sliding surface,which can reduce the impact of disturbances,and enhance control precision.Furthermore,we employ nonlinear information gain to adaptively adjust the switching gain,so as to mitigate chattering effects.Simulation results demonstrate that the enhanced NDO effectively estimates disturbances,leading to improved dynamic performance.The proposed control approach exhibits higher control precision and disturbance rejection capabilities.

Key words: Ball and plate system, Prescribed performance function, Nonlinear disturbance observer, Uncertain disturbances, Sliding mode controller

中图分类号: 

  • TP273
[1]HUANG W,ZHAO Y,YE Y,et al.State feedback control for stabilization of the ball and plate system[C]//2019 Chinese Control Conference(CCC).IEEE,2019:687-690.
[2]OKAFOR E,UDEKWE D,IBRAHIM Y,et al.Heuristic anddeep reinforcement learning-based PID control of trajectory tracking in a ball-and-plate system[J].Journal of Information and Telecommunication,2021,5(2):179-196.
[3]ZHANG Y,LI Y,LIU Y,et al.Control of cricket system using LQR controller optimized by particle swarm optimization[J].Journal of Physics:Conference Series,2020,1670(1):012016.
[4]ZHANG Z,LI S,LUO S.Terminal guidance laws of missilebased on ISMC and NDOB with impact angle constraint[J].Aerospace Science and Technology,2013,31(1):30-41.
[5]LI J F,XIANG F H.RBF Network Adaptive Sliding Mode Control of Ball and Plate System Based on Reaching Law[J].Ara-bian Journal for Science and Engineering,2021,9(24):1-12.
[6]SULEIMAN H U,MU’AZU M B,ZARMA T A,et al.Me-thods of chattering reduction in sliding mode control:a case study of ball and plate system[C]//2018 IEEE 7th International Conference on Adaptive Science & Technology(ICAST).IEEE,2018:1-8.
[7]PAN R C,LI Z G.Adaptive sliding mode control of coordinated arm based on exponentially convergent observer[J].Journal of ARMS and Equipment Engineering,2021,42(4):53-57,67.
[8]LIU H B,LIU S L.Fuzzy sliding mode control of rotary table with disturbance compensation[J].Journal of Electrical Machines and Control,2018,22(8):113-118.
[9]WANG S W,LI S Q,MOURNING W,et al.Reduced-order dilation state observer and jitter-free sliding-mode control of Buck converter(in English)[J].Control Theory and Applications,2021,38(6):766-774.
[10]NA J,HUANG Y,WU X,et al.Active adaptive estimation and control for vehicle suspensions with prescribed performance[J].IEEE Transactions on Control Systems Technology,2017,26(6):2063-2077.
[11]ZHU B,SUN R S,CHEN J Q,et al.Sliding mode control algorithms for nonaffine systems with nonmatched disturbances and unknown dynamics[J].Control Theory and Applications,2021,38(6):862-870.
[12]YOU S,GIL J,KIM W.Adaptive neural network control using nonlinear information gain for permanent magnet synchronous motors[J].IEEE Transactions on Cybernetics,2021,3(53):1392-1404.
[13]CAI T,DONG Z,LIU X.On disturbance rejection control for nonlinear three-revolute prismatic spherical ball and plate systems[J].Advanced Control for Applications:Engineering and Industrial Systems,2021,3(2):e62.
[14]WANG S B,REN X M,LI S Q,et al.Parameter estimation and adaptive control of rotary table servo system based on preset performance[J].Journal of Beijing Institute of Technology,2019,39(2):193-197.
[15]BANG H,LEE Y S.Implementation of a ball and plate control system using sliding mode control[J].IEEE Access,2018,6:32401-32408.
[16]KHAMAR M,EDRISI M.Designing a backstepping slidingmode controller for an assistant human knee exoskeleton based on nonlinear disturbance observer[J].Mechatronics,2018,54:121-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!