计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800039-6.doi: 10.11896/jsjkx.230800039

• 图像处理&多媒体技术 • 上一篇    下一篇

改进YOLOV7的跌倒人员检测

赵俊杰, 周晓静, 李佳欣   

  1. 河北工业职业技术大学宣钢分院 河北 张家口 075100
  • 发布日期:2024-06-06
  • 通讯作者: 赵俊杰(343221169@qq.com)

Improved YOLOV7 for Fall Detection

ZHAO Junjie, ZHOU Xiaojing, LI Jiaxing   

  1. Hebei Vocational University of Industry and Technology,Zhangjiakou,Hebei 075100,China
  • Published:2024-06-06
  • About author:ZHAO Junjie,born in 1989,master,lecture.His main research interest is image recognition.

摘要: 随着人口老龄化的到来,老年人在跌倒后能否及时被发现并得到救治显得越来越重要。采用YOLOV7可以通过图像识别老年人跌倒,为提高原始YOLOV7的检测精度和速度,本研究对YOLOV7进行了一系列改进,并提出了一种新型YOLOV7结构——YOLOV7-CMJ。首先对收集到的图片进行处理,对部分图片进行了旋转、亮度等预处理,并对其进行标定以获取样本数据集;其次引入CBAM注意力机制,增强了通道注意力和空间注意力,从而提升模型的准确性;最后,将YOLOV7中原有的PANet特征融合改为MJPANet,即多跳动征融合结构,并将之前的Concat采用加权的方式进行替换,从而得到改进YOLOV7-CMJ结构。通过与原始YOLOV7进行实验对比可知,改进后的算法精度提高了7.4%、召回率提高了7.1%、平均精度提高了7.1%,证明了改进算法的有效性,更好地满足了摔倒检测要求。

关键词: 跌倒检测, YOLOV7, 跳动连接, CBAM, 加权连接

Abstract: With the advent of the aging population,it is increasingly important for the elderly to be detected and treated in time after falling.In order to improve the detection accuracy and speed of the original YOLOV7,a series of improvements are made to YOLOV7,and a new YOLOV7 structure,namely YOLOV7-CMJ structure,is proposed.Firstly,the collected pictures are processed,and some pictures are preprocessed with rotation,brightness and other preprocessing,and calibrated to obtain sample datasets.Secondly,the CBAM attention mechanism is introduced to enhance channel attention and spatial attention,thereby improving the accuracy of the model.Finally,the original PANet feature fusion in YOLOV7 is changed to MJPANet,that is,multi-beating sign fusion structure,and the previous Concat is replaced by weighting,so as to improve the YOLOV7-CMJ structure.By comparing with the original YOLOV7,it can be seen that the accuracy of the improved algorithm is increased by 7.4%,the recall rate is increased by 7.1%,and the average accuracy is increased by 7.1%,which proves the effectiveness of the improved algorithm and better meets the requirements of fall detection.

Key words: Fall detection, YOLOV7, Jump connection, CBAM, Weighted joins

中图分类号: 

  • TP391
[1]United Nations Department of Economic and Social Affairs,Population Division.World population ageing 2020 highlights:living arrangements of older persons(ST/ESA/SER.A/451)[R/OL].(2021-07-24)[2021-11-04].www.un.org/development/desa/pd/.
[2]GE Y F,WANG L J,FENG W M,et al.The challenge andstrategy selection of healthy aging in China[J].Journal of Mana-gement World,2020,36:86-95.
[3]HUANG M A,CHEN Y.The status quo and Advice of China’s Ageing[J].Economic Research Guide,2018(10):54-58,66.
[4]ZHENG Y Z,ZHANG S.Review on classification of human fall detection technology[J].Changjiang Information & Communications,2021(1):4.15-18,
[5]XIE H,SHI H Q,QI Y X et al.Spationtemporal Fall Event Detection Algorithm Based on Attention Mechanism Subnetwork[J].Computer and Modernization,2022(3):70-75,81.
[6]CHENG S H,XIE W R,ZHANG D F,et al.Fall action recognition based on computer vision[J].Acta Metrologica Sinica,2022(43):107-113.
[7]XU W,LIAO Y K.Design and Research of Fall Detection System for Empty-nesters based on YOLOv5[J].Software Engineering,2023,26(2):40-45.
[8]WANG C Y,BOCHKOVSKIY A,LIAO H.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL].[2022-07-06].https://arxiv.org/pdf/2207.02696.pdf.
[9]JOCHER G.Yolov5[EB/OL].(2020-08-10)[2020-08-10].https://github.com/ultralytics/yolo-v5.
[10]ElFWING S,UCHIBE E,DOYA K.Sigmoid,weighted linearunits for neural network function approximation in reinforcement learning[J].Neural Networks,2018,107:3-11.
[11]ZHANG X D ,ZENG H,GUO S,et al.Efficient Long-RangeAttention Network for Image Super-resolution[J].arXiv:2203.06697,2022.
[12]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision.Munich:Springer,2018:3-19.
[13]FU J,ZHENG H,MEI T.Look closer to see better:recurrent attention convolutional neural network for fine-grained image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition.2017:4476-4484.
[14]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//IEEE Conference on Computer Vision & Pattern Recognition.2018:7132-7141.
[15]WANG F,WANG L,ZHANG R L,et al.Pedestrian Detection Algorithm Based on Fusion FPN and Faster R-CNN[J].Journal of Data Acquisition and Processing,2019,34(3):530-537.
[16]LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018.8759-8768.
[17]NIU Z Y.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452:48-62.
[18]PADILLA R,NETTO S L,DA SILVA E A B.A Survey on Performance Metrics for Object-Detection Algorithms[C]//2020 International Conference on Systems,Signals and Image Processing(IWSSIP).Niteroi,Brazil,2020:237-242.
[19]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,OH,USA,2014:580-587.
[20]GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago,Chile,2015:1440-1448.
[21]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:TowardsReal-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[22]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]//Proceedings of European Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2016:21-37.
[23]GE Z,LIU ST,WANG F,et al.YOLOX:Exceeding YOLO Series in 2021[J].arXiv:2107.08430,2021.
[24]REDMON J,FARHADI A.Yolov3:An incremental improve-ment[J].arXiv:1804.02767,2018.
[25]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!