计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800093-7.doi: 10.11896/jsjkx.230800093

• 大数据&数据科学 • 上一篇    下一篇

基于改进主题模型方法的三级短视频用户画像的研究

黄玉民, 赵婵婵   

  1. 内蒙古工业大学信息工程学院 呼和浩特 010051
  • 发布日期:2024-06-06
  • 通讯作者: 赵婵婵(cczhao@imut.edu.cn)
  • 作者简介:(hym_15927182110@163.com)
  • 基金资助:
    内蒙古自治区直属高校基本科研业务费项目(ZTY2023022,JY20230082);内蒙古自治区硕士研究生科研创新项目(S20231129Z);内蒙古自治区自然科学基金项目(2023LHMS06016)

Study on Three-level Short Video User Portrait Based on Improved Topic Model Method

HUANG Yumin, ZHAO Chanchan   

  1. College of Information Engineering,Inner Mongolia University of Technology,Huhhot 010051,China
  • Published:2024-06-06
  • About author:HUANG Yumin,born in 1998,postgra-duate.His main research interests include data mining and personalized re-commendations .
    ZHAO Chanchan,born in 1982,Ph.D,associate professor.Her main research interests include computer network and software defined network.
  • Supported by:
    Basic Scientific Research Business Fee Project of Colleges and Universities Directly under the Inner Mongolia Autonomous Region(ZTY2023022,JY20230082),Inner Mongolia Autonomous Region Postgraduate Research Innovation Project(S20231129Z) and Inner Mongolia Autonomous Region Natural Science Foundation Project(2023LHMS06016).

摘要: 针对如何从海量短视频数据、用户数据、交互数据中快速抽象出精准的用户兴趣的问题,提出了基于主题模型的三级标签用户画像构建方法。基于主题构建方法,将融合的LDA和GSDMM主题模型所获取的视频主题词作为用户兴趣表达向量。首先,搭建了LDA过滤器,通过比对阈值剔除与主题无关的文本信息,缩小文本规模,降低非主要语料对于兴趣表达向量生成的影响。然后,提出结合语义信息和语境信息的特征词权重矩阵的构建方法,使用Bi-GRU神经网络计算词向量的上下文特征,并将其作为语境特征,使用TF-IDF算法计算出的词频权重作为语义特征,结合语境和语义特征扩充特征词含义。最后使用带有兴趣权重分配的GSDMM模型学习特征向量权重矩阵,实现用户兴趣标签生成和用户不同喜好程度影响下的兴趣权重修正。实验结果表明,该方法能够比较完备准确地表征用户画像,优于单一的主题构建方法,并且在聚类效果上表现出色。通过构建完备的用户画像,能够精准把握用户痛点,为后续个性化推荐提供服务。

关键词: 短视频, 用户画像, 主题分析模型, 语义权重, 语境权重

Abstract: Aiming at the problem of how to quickly extract accurate user interests from massive short video data,user data and interactive data,a three-level label user portrait construction method based on topic model is proposed.Based onthe topic construction method,the video topic words obtained by the fused LDA and GSDMM topic models are used as user interest expression vectors.Firstly,an LDA filter is built to eliminate the topic-independent text information by comparing the threshold,so as to reduce the scale of the text and reduce the influence of non-main corpus on the generation of interest expression vector.Then,the construction method of the feature word weight matrix combining semantic information and context information is proposed.The Bi-GRU neural network is used to calculate the context feature of the word vector as the context feature,and the word frequency weight calculated by the TF-IDF algorithm is used as the semantic feature.Combining context and semantic features to expand the meaning of feature words.Finally,the GSDMM model with interest weight distribution is used to learn the feature vector weight matrix,and the user interest tag generation and the interest weight correction under the influence of different user preferences are realized.Experiments show that this method can represent user portraits more completely and accurately,which is better than single topic construction method,and performs well in clustering effect.By constructing a complete user portrait,the user’s pain points could be accurately grasp,so as to provide services for subsequent personalized recommendation.

Key words: Short video, User portraits, Topic analysis model, Semantic weight, Context weight

中图分类号: 

  • TP391
[1]ZHAO Y H,LIU F L,LUO L.A Review of User Portrait Research in the Context of Big Data:Knowledge System and Research Prospects[J].Library Science Research,2019(24):13-24.
[2]SHAN X H,ZHANG X Y,LIU X Y.Research on User Por-traits Based on Online Reviews-A Case Study of Ctrip Hotel[J].Intelligence Theory and Practice,2018,41(4):99-104,149.
[3]WANG L X,SHEN Z,LI Y.Social Q & A community user portrait construction[J].Information theory and practice,2018,41(1):129-134.
[4]WANG Q F.Research on Bayesian network in user interestmodel construction[J].Wireless Internet Technology,2016(12):101-102.
[5]ZHANG Y.Practical analysis of statistical methods for userportraits in the context of big data[J].Modern Business,2020(6):9-10.
[6]WAN J P.Design and implementation of real-time game userportrait system based on big data[D].Beijing:China University of Geosciences,2021.
[7]ZHANG H X,SHENG F F,XU P Y,et al.Visualization of po-pulation characteristics based on mobile terminal log data[J].Journal of Software,2016,27(5):1174-1187.
[8]COOPER A.The inmates are running the asylum[M].Vieweg+Teubner Verlag,1999.
[9]GAO G S.A review of user portrait construction methods[J].DataAnalysis and Knowledge Discovery,2019,3(3):25-35.
[10]NIELSEN L.Personas-user focused design[M].London:Sprin-ger,2013.
[11]BLYTHE M A,WRIGHT P C.Pastiche scenarios:Fiction as a resource for user centred design[J].Interacting with Computers,2006,18(5):1139-1164.
[12]MIDDLETON S E,SHADBOLT N R,DE ROURE D C.Ontological user profiling in recommender systems[J].ACM Tran-sactions on Information Systems(TOIS),2004,22(1):54-88.
[13]LEUNG K W T,LEE D L.Deriving concept-based user profiles from search engine logs[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(7):969-982.
[14]FENG Y,ZOU B X,XU H Y.Short video recommendationmodel based on video content features and barrage text[J].Journal of Liaoning University(Natural Science Edition),2021,48(2):108-115.
[15]HU Q,SHEN J J,JING G H,et al.Service clustering methodbased on describing context feature words and improved GSDMM model[J].Communication Journal,2021,42(8):176-187.
[16]ZU X,XIE F.A keyword extraction algorithm based on global and local feature representation[J].Journal of Yunnan University(Natural Science Edition),2023,45(4):825-836.
[17]CAI M D,SHEN G H,HUANG Z Q.A semi-supervised learning keyword extraction method without manual labeling[J].Journal of Chinese Computer Systems,2024,45(1):69-74.
[18]CHEN L Y,WU T.A short text sentiment analysis methodcombining topic model andself-attention mechanism[J].Fo-reign Electronic Measurement Technology,2021,40(11):18-23.
[19]FAN H,LI P F.Research on short text sentiment analysis based on FastText word vector and bidirectional GRU recurrent neural network-Taking Weibo comment text as an example[J].Information Science,2021,39(4):15-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!