计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 399-407.doi: 10.11896/jsjkx.230900103
王依菁1, 王清贤1, 丁大钊2, 闫廷聚1, 曹琰1
WANG Yijing1, WANG Qingxian1, DING Dazhao2, YAN Tingju1, CAO Yan1
摘要: 移动设备通常接入无线局域网,并依赖WiFi加密协议对网络中数据链路层流量进行加密,以维护通信安全。然而,现有加密流量识别方法主要针对网络层及以上的流量载荷进行分析,无法有效识别链路层加密流量的移动业务类别。针对该问题,提出了一种在WiFi加密场景下基于链路层流量的移动业务识别方法。通过被动嗅探WiFi数据帧,提取链路层中可用的流量侧信道特征,将流量数据转换为二维直方图矩阵。融合Inception网络和SE-Attention机制,提出识别模型——SE-Inception,旨在更好地捕捉到流量数据帧分布特征中的细节和全局信息,突出对重要特征的关注,以提高识别准确率。文中采用真实数据集进行实验验证,结果表明该方法在WiFi加密场景下可有效识别链路层加密流量的移动业务类别,平均准确率可达98.29%,相比于已有的识别方法具有更优的性能。
中图分类号:
[1]CNNIC.The 52nd Statistical Report on China's Internet Deve-lopment [EB/OL].(2023-08-28)[2023-08-30].https://www.cnnic.cn/n4/2023/0828/c199-10830.html. [2]LASHKARI A H,DANESH M M S,SAMADI B.A survey on wireless security protocols (WEP,WPA and WPA2/802.11 i)[C]//2009 2nd IEEE International Conference on Computer Science and Information Technology.IEEE,2009:48-52. [3]Radware (2018).Global application and network security report[EB/OL].https://www.Datacomcz/userfiles/radware_ert_report_2017_2018_fifinal.pdf. [4]RAO Q M,PENG Y B.Automatic Fingerprint Extraction Me-thod Based On DPI[J].Computer Applications and Software,2021,38(4):328-333. [5]LIU Y,SONG T,LIAO L J.A Real-Time Mobile Traffic Classification Approach Based on Timing Sequence Flow[J].Transactions of Beijing Institute of Technology,2018,38(5):537-544. [6]YAO H,RANJAN G,TONGAONKAR A,et al.Samples:Self adaptive mining of persistent lexical snippets for classifying mobile application traffic[C]//Proceedings of the 21st Annual International Conference on Mobile Computing and Networking.2015:439-451. [7]HAN X,ZHOU Y,HUANG L,et al.Maximum entropy based IP-traffic classification in mobile communication networks[C]//2012 IEEE Wireless Communications and Networking Confe-rence(WCNC).IEEE,2012:2140-2145. [8]WANG Q,YAHYAVI A,KEMME B,et al.I know what youdid on your smartphone:Inferring app usage over encrypted data traffic[C]//2015 IEEE Conference on Communications and Network Security (CNS).IEEE,2015:433-441. [9]ZHANG F,HE W,LIU X,et al.Inferring users' online activities through traffic analysis[C]//Proceedings of the Fourth ACM Conference on Wireless Network Security.2011:59-70. [10]YIN H D,ZHANG J Y,SHANG Q H.Classification and Recognition of Encrypted Traffic in Wireless Networks Based on Data Link Layer Features[J].Computer Measurement & Control,2021,29(5):220-224. [11]LI J,MA X,GUODONG L,et al.Can we learn what people are doing from raw DNS queries?[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications.IEEE,2018:2240-2248. [12]VAN EDE T,BORTOLAMEOTTI R,CONTINELLA A,et al.Flowprint:Semi-supervised mobile-app fingerprinting on encrypted network traffic[C]//Network and Distributed System Security Symposium (NDSS).2020. [13]MONGKOLLUKSAMEE S,VISOOTTIVISETH V,FUKUDA K.Enhancing the performance of mobile traffic identification with communication patterns[C]//2015 IEEE 39th Annual Computer Software and Applications Conference.IEEE,2015:336-345. [14]BAGUI S,FANG X,KALAIMANNAN E,et al.Comparison of machine-learning algorithms for classification of VPN network traffic flow using time-related features[J].Journal of Cyber Security Technology,2017,1(2):108-126. [15]TAYLOR V F,SPOLAOR R,CONTI M,et al.Robust smartphone app identification via encrypted network traffic analysis[J].IEEE Transactions on Information Forensics and Security,2017,13(1):63-78. [16]SALTAFORMAGGIO B,CHOI H,JOHNSON K,et al.Eavesdropping on {Fine-Grained} user activities within smartphone apps over encrypted network traffic[C]//10th USENIX Workshop on Offensive Technologies (WOOT 16).2016. [17]GUO L,WU Q,LIU S,et al.Deep learning-based real-time VPN encrypted traffic identification methods[J].Journal of Real-Time Image Processing,2020,17:103-114. [18]XIAO X,XIAO W,LI R,et al.EBSNN:extended byte segment neural network for network traffic classification[J].IEEE Transactions on Dependable and Secure Computing,2021,19(5):3521-3538. [19]ACETO G,CIUONZO D,MONTIERI A,et al.Encrypted multi-task traffic classification via multimodal deep learning[C]//IEEE International Conference on Communications.IEEE,2021:1-6. [20]HU X,GU C,WEI F.CLD-Net:a network combining CNN and LSTM for internet encrypted traffic classification[J].Security and Communication Networks,2021,2021:1-15. [21]CHEN M H,ZHU Y F,LU B,et al.Classification of Application Type of Encrypted Traffic Based on Attention-CNN[J].Computer Science,2021,48(4):325-332. [22]LI Q,SHI W,SUN J P,et al.The research of network trafficidentification based on convolutional neural network[J].Journal of Sichuan University(Natural Science Edition),2017,54(5):959-964. [23]CHEN X J,WANG P,YU J H.CNN based entrypted trafficidentification method[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2018,38(6):36-41. |
|