计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000080-7.doi: 10.11896/jsjkx.231000080

• 网络&通信 • 上一篇    下一篇

面向车辆边缘计算任务卸载的延迟与能耗联合优化方法

李文旺, 周浩浩, 邓苏, 马武彬, 吴亚辉   

  1. 国防科技大学信息系统工程全国重点实验室 长沙 410073
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 周浩浩(haohaozhou@nudt.edu.cn)
  • 作者简介:(liwenwang22@nudt.edu.cn)
  • 基金资助:
    国家自然科学基金(61871388)

Joint Optimization of Delay and Energy Consumption of Tasks Offloading for Vehicular EdgeComputing

LI Wenwang, ZHOU Haohao, DENG Su, MA Wubin, WU Yahui   

  1. National Key Laboratory ofInformation Systems Engineering,National University of Defense Technology,Changsha 410073,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:LI Wenwang,born in 2000,postgra-duate.His main research interests include edge computing and performance evaluation.
    ZHOU Haohao,born in 1988,Ph.D,associate research fellow.His main research interests include edge computing and performance evaluation.
  • Supported by:
    National Natural Science Foundation of China(61871388).

摘要: 车联网(IoV)与联网自动驾驶汽车(CAV)的结合推动了自动驾驶技术的飞速发展,但也带来了对计算资源的巨大需求,给资源受限的车辆带来了挑战。车辆边缘计算(VEC)的出现,提供了一种全新的解决方案,通过将任务卸载到路侧单元中的边缘服务器上,能够以更高效的方式为车联网提供服务。然而,多个车辆同时发出卸载请求时会产生资源抢占,增大任务处理延时,如何高效调度资源以最大化服务质量是一个亟待解决的问题。为此,文中旨在从多目标优化的角度,详细分析VEC计算卸载的延迟和能耗,使延迟和成本最小化,并提出了名为NSGA2TO的基于改进非支配排序遗传算法的任务卸载算法。该算法能够寻找出多目标优化问题的Pareto最优解,大量仿真结果验证了NSGA2TO的优越性能。此外,还探究了Pareto最优解所涉及的延迟与能耗之间的关系,有助于更好地理解车辆任务卸载问题的复杂性。通过合理平衡延迟和能耗,将能够进一步提升车联网系统的性能和效率,为用户提供更安全、更便捷的出行体验。

关键词: 车辆边缘计算, 任务卸载, 多目标优化, NSGA-II, 帕累托最优解

Abstract: The combination of the Internet of Vehicles(IoV) and connected autonomous vehicles(CAV) has promoted the rapid development of autonomous driving technology,but it has also created a huge demand for computing resources,which is challen-ging to resource-constrained vehicles.Vehicular edge computing(VEC) offers an entirely new solution.By offloading tasks to edge servers deployed in the roadside unit(RSU),we are able to service the IOV in a more efficient way.However,resource preemption will occur when multiple vehicles send offloading requests at the same time,which will increase the task processing delay.How to efficiently dispatch resources to maximize the quality of service is an urgent problem to be solved.To solve this pro-blem,we treat it as a multi-objective optimization pro-blem and propose a task offloading algorithm named NSGA2TO based on non-dominated sorting genetic algorithm-II.The algorithm can find the Pareto optimal solution of multi-objective optimization pro-blems,and extensive simulation results verify that NSGA2TO outperforms counterparts.In addition,we also explore the relationship between the delay and energy consumption involved in the Pareto optimal solution,which helps to better understand the complexity of the vehicle tasksoffloading problem.By properly balancing delay and energy consumption,we will be able to further improve the performance and efficiency of the connected autonomous system,providing users with a safer and more convenient travel experience.

Key words: Vehicular edge computing, Tasks offloading, Multi-objective optimization, NSGA-II, Pareto optimal solution

中图分类号: 

  • TP311
[1]HUANG Z,LOO B P Y.Urban traffic congestion in twelvelarge metropolitan cities:A thematic analysis of local news contents,2009-2018[J].International Journal of Sustainable Transportation,2023,17(6):592-614.
[2]ANG L M,SENG K P,IJEMARUG K,et al.Deployment of IoV for smart cities:Applications,architecture,and challenges[J].IEEE Access,2018,7:6473-6492.
[3]FAROOQU I,ISLAM M N,MUHAMMAD M K,et al.An Empirical Investigation of Performance Challenges Within Context-Aware Content Sharing for Vehicular Ad Hoc Networks[J].Trans.Emerging Telecommunications Technologies,2022,33(10):e4157.
[4]HEID B,HUTH C,KEMPFS,et al.Ready for inspection:The automotive aftermarket in 2030[R].McKinsey & Company,Tech.Rep.,2018.
[5]RAJASEKHAR K,KUMAR R,KIRAN M.Next-GenerationTechnologies Empowered Future IoV[C]//2022 IEEE 7th International Conference for Convergence in Technology(I2CT).IEEE,2022:1-5.
[6]LU W,LEE W.Vehicular edge computing and networking:Asurvey[J].Mobile Networks and Applications,2000,5(2):101-102.
[7]XU W,ZHOU H,SHEN X,et al.V2X Interworking via Vehi-cular Internet Access[M]//Internet Access in Vehicular Networks.Berlin:Springer,2021:57-82.
[8]TANG J,LI X,JIN M,et al.A Mobility Aware Task Offloa-ding Scheme For Vehicle Edge Computing[C]//2021 13th International Conference on Wireless Communications and Signal Processing(WCSP).IEEE,2021:1-5.
[9]FENG W,ZHANG N,LI S,et al.Latency minimization of reverse offloading in vehicular edge computing[J].IEEE Transactions on Vehicular Technology,2022,71(5):5343-5357.
[10]WEN Y H,ZHANG Q,YUAN H,et al.Multi-Stage PSO-Based Cost Minimization for Computation Offloading in Vehicular Edge Networks[C]//2021 IEEE International Conference on Networking,Sensing and Control(ICNSC).IEEE,2021,1:1-6.
[11]DU J,SUN Y,ZHANG N,et al.Cost-effective task offload-ing in NOMA-enabled vehicular mobile edge computing[J].IEEE Systems Journal,2022,17(1):928-939.
[12]LIANG D,MA L,LOU H,et al.An Adaptive Algorithm to Offload Task for User's QoE in Vehicular Edge System[C]//2023 26th International Conference on Computer Supported Cooperative Work in Design(CSCWD).IEEE,2023:1263-1268.
[13]ZHU L,ZHANG Z,LIU L,et al.Online Distributed Learning-Based Load-Aware Heterogeneous Vehicular Edge Computing[J].IEEE Sensors Journal,2023,23(15):17350-17356.
[14]LU Y,AI B,ZHONG Z,et al.Energy-efficient task transfer in wireless computing power networks[J].IEEE Internet of Things Journal,2022,10(11):9353-9365.
[15]CHEN X,DAI W,NI W,et al.Augmented Deep Rein-forcement Learning for Online Energy Minimization of Wireless Powered Mobile Edge Computing[J].IEEE Transactions on Communications,2023,71(5):2698-2710.
[16]ZHENG K,JIANG G,LIU X,et al.DRL-Based Offloading for Computation Delay Minimization in Wireless-Powered Multi-Access Edge Computing[J].IEEE Transactions on Communications,2023,71(3):1755-1770.
[17]SHINDE S S,BOZORGCHENANI A,TARCHI D,et al.On the design of federated learning in latency and energy constrained computation offloading operations in vehicular edge computing systems[J].IEEE Transactions on Vehicular Technology,2021,71(2):2041-2057.
[18]YADAV R,ZHANG W,KAIWARTYA O,et al.Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing[J].IEEE Transactions on Vehicular Technology,2020,69(12):14198-14211.
[19]TANG D,ZHANG X,TAO X.Delay-optimal temporal-spatial computation offloading schemes for vehicular edge computing systems[C]//2019 IEEE Wireless Communications and Networking Conference(WCNC).IEEE,2019:1-6.
[20]LIU Y,WANG S,HUANG J,et al.A computation offloading algorithm based on game theory for vehicular edge networks[C]//2018 IEEE International Conference on Communications(ICC).IEEE,2018:1-6.
[21]REN J,YU G,HE Y,et al.Collaborative cloud and edge computing for latency minimization[J].IEEE Transactions on Vehicular Technology,2019,68(5):5031-5044.
[22]PAN Z Y,CHEN J L,CHANG Y C.Low-latency computation offloading based on 5G Edge Computing Systems[C]//2022 24th International Conference on Advanced Communication Technology(ICACT).IEEE,2022:95-100.
[23]ZHANG K,MAO Y,LENG S,et al.Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J].IEEE Access,2016,4:5896-5907.
[24]JANG Y,NA J,JEONG S,et al.Energy-efficient task offloading for vehicular edge computing:Joint optimization of offloading and bit allocation[C]//2020 IEEE 91st Vehicular Technology Conference(VTC2020-Spring).IEEE,2020:1-5.
[25]LV W,YANG P,ZHENG T,et al.Energy Consumption andQoS-Aware Co-Offloading for Vehicular Edge Computing[J].IEEE Internet of Things Journal,2022,10(6):5214-5225.
[26]KALYANMOY D.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Trans.on Evolutionary Computation,2002,6(2):182-197.
[27]WU Q,XU X,ZHAO Q,et al.Tasks offloading for connected autonomous vehicles in edge computing[J].Mobile Networks and Applications,2022,27(6):2295-2304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!