计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 160-169.doi: 10.11896/jsjkx.231100117
丁新宇1, 孔兵1, 陈红梅1, 包崇明2, 周丽华1
DING Xinyu1, KONG Bing1, CHEN Hongmei1, BAO Chongming2, ZHOU Lihua1
摘要: 图聚类的目的在于发现网络的社区结构。针对目前聚类方法无法很好地获取网络深层潜在社区信息,且不能对特征进行合适的信息整合导致节点社区语义不清晰的问题,提出了一种路径掩码自编码器引导无监督属性图节点聚类模型(Path-Masked Autoencoder Guiding Unsupervised Attribute Graph Node Clustering,PAUGC)。该模型通过对网络进行随机路径掩码后使用自编码器来深度挖掘网络拓扑结构,从而获得良好的全局结构语义信息,利用规范性方法来对特征进行信息整合,使节点特征能够更好地表征特征的类别信息。此外,模型结合模块最大化来抓取整个图中的底层社区群落信息,目的在于更合理地将其融合到低维度节点特征中。最后通过自训练聚类来不断迭代优化更新聚类表示以获得最终的节点特征。通过在8个基准数据集上与11种经典方法进行大量实验对比,证明了PAUGC的有效性。
中图分类号:
[1]LIU C,WEN L,KANG Z,et al.Self Supervised Consensus Rep-resentation Learning for Attributed Graph[C]//Proceedings of the 29th ACM International Conference on Multimedia.New York:ACM Press,2021:2654-2662. [2]WANG M,WANG C,YU J X,et al.Community Detection inSocial Networks:An In Depth Benchmarking Study with A Procedure Oriented Framework[J].Proceedings of the VLDB Endowment,2015,8(10):998-1009. [3]GARCIA J O,ASHOURVAN A,MULDOON S,et al.Applications of Community Detection Techniques to Brain Graphs:Algorithmic Considerations and Implications for Neural Function[J].Proceedings of the IEEE,2018,106(5):846-867. [4]KRISHNAMURTHY B,WANG J.On Network-Aware Clustering of Web Clients[C]//Proceedings of the Conference on Applications,Technologies,Architectures,and Protocols for Computer Communication.New York:ACM Press,2000:97-110. [5]CHIANG M M T,MIRKIN B.Intelligent Choice of the Number of Clusters in K-Means Clustering:An Experimental Study with Different Cluster Spreads[J].Journal of Classification,2010,27:3-40. [6]MCINNES L,HEALY J,ASTELS S.HDBSCAN:HierarchicalDensity Based Clustering[J].Open Source Softw,2017,2(11):205. [7]KIPF T N,WELLING M.Semi-Supervised ClassificAtion with Graph Convolutional Networks[J].arXiv:1609.02907,2016. [8]TANG J M,HAN H,HUANG L.Coarse grained and Fine-grained Features Extraction Based on Unsupervised Learning in Pedestrian Reidentification[J].Computer Engineering,2022,48(4):269-275,283. [9]WANG C,PAN S,LONG G,et al.Mgae:Marginalized GraphAutoencoder for Graph Clustering[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.Singapore:ACM Press,2017:889-898. [10]PARK J,LEE M,CHANG H J,et al.Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.Seoul:IEEE Press,2019:6519-6528. [11]PAN S,HU R,LONG G,et al.Adversarially Regularized Graph Autoencoder for Graph Embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence.Stockholm:IJCAI Press,2018:2609-2615. [12]WANG C,PAN S,HU R,et al.Attributed Graph Clustering:A Deep Attentional Embedding Approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Macao:IJCA Press,2019:3670-3676. [13]SALEHI A,DAVULCU H.Graph Attention Auto-Encoders[C]//Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence.ELECTR NETWORK:IEEE Press,2020:989-996. [14]HUI B,ZHU P,HU Q.Collaborative Graph Convolutional Networks:Unsupervised Learning Meets Semi-Supervised Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI Press,2020:4215-4222. [15]ZHOU X,SU L,LI X,et al.Community Detection Based on Unsupervised Attributed Network Embedding[J].Expert Systems with Applications,2023,213:118937. [16]NEWMAN M E J.Modularity and Community Structure in Networks[J].Proceedings of the National Academy of Sciences,2006,103(23):8577-8582. [17]YANG X,LIU Y,ZHOU S,et al.Cluster Guided Contrastive Graph Clustering Network[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence.Washington:AAAI Press,2023:10834-10842. [18]ZHANG S,PANG J,LIAO M X.Graph Clustering Algorithm Based on Hybrid Feature Selection[J].Journal of Chinese Computer Systems,2024,45(3):606-612. [19]SCHAUB M T,DELVENNE J C,ROSVALL M,et al.TheMany Facets of Community Detection in Complex Networks[J].Applied Network Science,2017,2(1):1-13. [20]FORTUNATO S.Community Detection in Graphs[J].Physics Reports,2010,486(3/4/5):75-174. [21]FORTUNATO S,HRIC D.Community Detection in Networks:A User Guide[J].Physics Reports,2016,100(659):1-44. [22]AGARWAL G,KEMPE D.Modularity Maximizing Graph Communities via Mathematical Programming[J].The European Physical Journal B,2008,66(3):409-418. [23]KIPF T N,WELLING M.Variational Graph Auto-Encoders[J].arXiv:1611.07308,2016. [24]QIU C,HUANG Z,XU W,et al.VGAER:Graph Neural Network Reconstruction Based Community Detection[J].arXiv:2201.04066,2022. [25]LI J,YU J,LI J,et al.Dirichlet Graph Variational Autoencoder[J].Advances in Neural Information Processing Systems,2020,33:5274-5283. [26]TIAN Y,DONG K,ZHANG C,et al.Heterogeneous GraphMasked Autoencoders[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence.Washington:AAAI Press,2023:9997-10005. [27]XU H,XIA W,GAO Q,et al.Graph Embedding Clustering:Graph Attention Auto Encoder with Cluster-Specificity Distribution[J].Neural Networks,2021,142:221-230. [28]CUI G,ZHOU J,YANG C,et al.Adaptive Graph Encoder for Attributed Graph Embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.Electr Network:KDD Press,2020:976985. [29]PENG Z,LIU H,JIA Y,et al.Deep Attention Guided Graph Clustering with Dual Self Supervision[J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(7):3296-3307. [30]BO D,WANG X,SHI C,et al.Structural Deep Clustering Network[C]//Proceedings of the 29th World Wide Web Confe-rence.2020:1400-1410. [31]TU W,ZHOU S,LIU X,et al.Deep Fusion Clustering Network[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Electr Network:AAAI Press,2021:9978-9987. [32]HASSANI K,KHASAHMADI A H.Contrastive Multi-ViewRepresentation Learning on Graphs[C]//Proceedings of the 37th International Conference on Machine Learning.Electr Network:ICML,2020:4074-4084. [33]GONG L,ZHOU S,TU W,et al.Attributed Graph Clustering with Dual Redundancy Reduction[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence.Vienna:IJCAI Press,2022:3015-3021. [34]LEE N,LEE J,PARK C.Augmentation-Free Self-SupervisedLearning on Graphs[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence.Electr Network:AAAI Press,2022:7372-7380. [35]ZHAO H,YANG X,WANG Z,et al.Graph Debiased Contrastive Learning with Joint Representation Clustering[C]//Proceedings of the 30th International Jo int Conference on Artificial Intelligence.Electr Network:IJCAI Press,2021:3434-3440. |
|