计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200088-9.doi: 10.11896/jsjkx.231200088

• 网络&通信 • 上一篇    下一篇

访问者访问趋势下多机器人动态分区巡逻策略

马文杰, 李宗刚, 杜亚江, 陈引娟   

  1. 兰州交通大学机电工程学院 兰州 730070
    兰州交通大学机器人研究所 兰州 730070
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 李宗刚(lizongg@126.com)
  • 作者简介:(1839684375@qq.com)
  • 基金资助:
    国家自然科学基金(61663020);甘肃省高等学校产业支撑计划项目(2022CYZC-33);大连理工大学工业装备结构分析国家重点实验室开放课题(ZG22119);兰州交通大学军民融合创新团队培育基金(JMTD202211)

Dynamic Partition Patrol Strategy of Multi-robot Under Visitor Access Trend

MA Wenjie, LI Zonggang, DU Yajiang, CHEN Yinjuan   

  1. School of Mechanical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    Robotics Institute,Lanzhou Jiaotong University,Lanzhou 730070,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:MA Wenjie,born in 1998,postgra-duate. His main research interests include multi-robot system cooperative control and so on.
    LI Zonggang,born in 1975,Ph.D,professor.His main research interests include intelligent bionic robot and multi-robot system cooperative control.
  • Supported by:
    National Natural Science Foundation of China(61663020),Gansu Province Higher Education Industry Support Plan Project (2022CYZC-33),Industrial Equipment Structure Analysis State Key Laboratory Open Project of DUT (ZG22119) and Military-civi-lian Integration Innovation Team Cultivation Fund of LJU(JMTD202211).

摘要: 针对外来访问者访问环境导致所在分区机器人巡逻工作负荷增大的问题,提出一种访问者访问趋势的多机器人动态分区巡逻策略,以提高多机器人系统在动态环境中巡逻的效率。首先,使用改进k-means策略完成对环境的静态初始化分,通过在不同位置加入机器人的访问频次需求,机器人在各自的区域中执行巡逻任务;其次,当访问者进入环境对不同节点进行访问时,机器人通过关注访问者访问的趋势,与相邻分区机器人协商后,将区域候选节点经过对相邻区域的多次转移以均衡分区机器人的工作负荷,完成对区域的实时动态划分。仿真结果表明,机器人可以在成功检测到访问者的同时保持工作负荷动态均衡,所提访问者访问趋势下多机器人动态分区巡逻策略可以显著提升动态环境下多机器人巡逻的效率。

关键词: 节点访问频次, 访问者趋势, 动态分区, 多机器人系统, 持续巡逻

Abstract: To address the issue of increased patrol workload for robots in areas with high foreign visitor traffic,this paper proposes a multi-robot dynamic partitioning patrol strategy that takes into account visitor trends.This strategy aims to improve the efficiency of the multi-robot system in patrolling dynamic environments.Firstly,an improved k-means strategy is used to complete the static initialization score of the environment.Then,the robots perform patrolling tasks in their respective zones by adding the robots′ access frequency requirements at different locations.Secondly,when visitors enter the environment to visit different nodes,the robots focus on the visitors′ access trends,negotiate with neighboring partitioned robots,and then transfer the region candidate nodes through the neighbouring regions multiple times to balance the workload of the partitioning robots and complete the real-time dynamic partitioning of the region.The simulation results demonstrate that the robots can effectively detect visitors while maintaining dynamic workload balancing.Additionally,the proposed multi-robot dynamic zoning patrol strategy,under the visitor access trend,can significantly enhance the efficiency of multi-robot patrol in dynamic environments.

Key words: Node access frequency, Visitor trends, Dynamic partition, Multi-robot system, Continuous patrol

中图分类号: 

  • TP242
[1]TALMOR N,AGMON N.On the power and limitations of deception in multi-robot adversarial patrolling[C]//Twenty-Sixth International Joint Conference on Artificial Intelligence.2017:430-436.
[2]WANG S.Research on decision control problems of mobile robots in complex dynamic environments[D].Hefei:University of Science and Technology of China,2023.
[3]YAN C B,ZHANG T.Multi-robot patrol:a distributed algo-rithm based on expected idleness[J].International Journal of Advanced Robotic Systems,2016,13(6):172988141666366.
[4]SEA V,KATO C,SUGAWARAT.Coordinated area partitio-ning method by autonomous agents for continuous cooperative tasks[J].J.Inf.Process(JIP),2017,25:75-87.
[5]JÜRGEN S,ANGELA P S,BERNHARD R.Min-Max Vertex Cycle Covers with Connectivity Constraints for Multi-Robot Patrolling[J].IEEE Robotics and Automation Letters,2022,7(4):10152-10159.
[6]JEONGEUN K,HYOUNG I S.A Voronoi diagram-based workspace partition for weak cooperation of multi-robot system in orchard[J].IEEE Access,2020,8:20676-20686.
[7]SUGIYAMA A,SEA V,SUGAWARA T.Effective task allocation by enhancing divisional cooperation in multi-agent conti-nuous patrolling tasks[C]//2016 IEEE 28th International Con-ference on Tools with Artificial Intelligence(ICTAI).IEEE,2016:33-40.
[8]CHEN F R,CHEN B,ZHU Z Q,et al.A cost-beneficial area-partition-involved collaborative patrolling game in a large-scale chemical cluster[J].Process Safety and Environmental Protection,2021,145:71-82.
[9]DOJIN C,JINSU H AND JONTAE L.Dynamic graph partitioning scheme for supporting load balancing in distributed graph environments[J].IEEE Access,2021,9:65254-65265.
[10]PORTUGAL D,ROCHA R P.MSP algorithm:multi-robot patrolling based on territory allocation using balanced graph partitioning[C]//Proceedings of the 2010 ACM Symposium on Applied Computing(SAC).Sierre,2010:22-26.
[11]SEA V,SUGIYAMA A,SUGAWARA T.Frequency-basedmulti-agent patrolling model and its area partitioning solution method for balanced workload[C]//Internationa Conference on Integration of Constraint Programming,Artificial Intelligence,and Operations Research.Department of Computer Science and Communication,2018.
[12]MAO T,RAYL E.Frequency-based patrolling with heterogeneous agents and limited communication[J].arXiv:1402.1757,2014.
[13]OUYANG Z Y,ERIC K H L,YIJI C,et al.Dynamic community partitioning for e-commerce last mile delivery with time window constraints[J].Computers & Operations Research,2023,160:106394.
[14]HOSHINO S,TAKAHASHI K.Dynamic partitioning strategies for multi-robot patrolling systems[J].Journal of Robotics and Mechatronics,2019,31(4):535-545.
[15]NGUYEN M T,MANIU C S,OLARU S.Optimization-basedcontrol for multi-agent deployment via dynamic Voronoi partition[J].Ifac Papersonline,2017,50(1):1828-1833.
[16]PATEL R,FRASCA P,DURHAM J W,et al.Dynamic partitioning and coverage control with asynchronous one-to-base-station communication[J].IEEE Transactions on Control of Network Systems,2016,3(1):24-33.
[17]JING R,MIN J,ZHAONING C.A method for topological region division of ocean flow field[J].Journal of Science and Technology of Surveying and Mapping,2020,37(5):545-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!