计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200133-9.doi: 10.11896/jsjkx.231200133
饶怡1, 袁博川1, 袁玉波1,2
RAO Yi1, YUAN Bochuan1, YUAN Yubo1,2
摘要: 随着人工智能在教育领域的广泛应用,在线课堂已成为当今极为便捷高效的新教育模式。然而,如何有效管理学习者的课堂学习状态成为一项重要的教育管理难题。鉴于此,提出一种在线课堂学习者互动状态识别方法。首先,将在线课堂数据源分为视频数据和音频数据,基于视频数据构建了包括学习者上肢姿态特征、表情特征以及面部特征等多维度的互动状态特征,基于音频数据构建了学习者的课堂应答状态特征。其次,通过特征选择算法筛选出的关键特征,构建二分类模型,采用贝叶斯优化实现对学生课堂互动状态的精确识别。最后,设计了一个在线课堂总体情况评估模型,为教师提供全面的课堂评估结果,优化教学策略。在自建的在线课堂视频数据集上,该单名学习者课中互动状态识别算法的准确率能够达到93%以上。
中图分类号:
[1]ZHANG W.In the Blink of an Eye:70 Years of Monumental Changes in Chinese Educational Informatization[J].China Education Network,2019(10):7-10. [2]SENSMEIERJ,ANDERSON C.ANI CONNECTION:Techno-logy Informatics Guiding Education Reform Moves Into Phase III:Implementation[J].Cin Computers Informatics Nursing,2009,27(4):265-266. [3] WEI Y,QIN D,HU J,et al.Student Classroom Behavior Recognition Based on Deep Learning[J].Modern Educational Technology,2019,29(7):5-7. [4]MASSOZ Q,LANGOHR T,FRANCOIS C,et al.The ULgmultimodality drowsiness database(called DROZY) and examples of use[C]// Winter Conference on Applications of Compu-ter Vision.Lake Placid:IEEE,2016:1-7. [5]SVENSSON U.Blink behaviour based drowsiness detection:method development and validation[J].Journal of Swedish National Road and Transport Research Institute,2024,362A(1):37-39. [6]ZALETELJ J,KOIR A.Predicting students' attention in theclassroom from Kinect facial and body features[J].Eurasip Journal on Image & Video Processing,2017,2017(1):80-82. [7]SHINODA K,YOSHII M,YAMAGUCHI H,et al.DaytimeSleepiness Level Prediction Using Respiratory Information[C]//Twenty-Eighth International Joint Conference on Artificial Intelligence.Macao:IJCAI,2019:5967-5974. [8]CAI Y W.Optimization Research on Wisdom Tree and Tencent Classroom under Computer Artificial Intelligence Algorithm[C]//International Conference on Data Analytics,Computing and Artificial Intelligence.Zakopane:ICDACAI,2022:334-337. [9]ZHAO Y,YAN H,WANG Z.The Advisable Technology ofKey-Point Detection and Expression Recognition for an Intelligent Class System[J].Journal of Physics:Conference Series,2019,1187:052011. [10]CHEN G,JI J,HUANG C.Student Classroom behavior Recognition based on OpenPose and Deep Learning[C]//7th International Conference on Intelligent Computing and Signal Processing.Xi'an:IEEE,2022:576-579. [11]CHEN Y.Multidimensional Classroom Interaction AnalysisBased on Speech Recognition[D].Wuahn:Huazhong Normal University,2021. [12]PENG S,NAGAO K.Recognition of Students' Mental States in Discussion Based on Multimodal Data and its Application to Educational Support[J].IEEE Access,2021,PP(99):1-1. [13]EMILY D,TRENT K,DAVE D. Rethinking classroom observation. Journal of Educational Leadership,2014,71(8):24-29. [14]OCHOA X,CHILUIZA K,MÉNDEZ,et al.Expertise estimation based on simple multimodal features[C]//ACM on International Conference on Multimodal Interaction.ACM,2013. [15]MALDONADO-MAHAUAD J,PÉREZ-SANAGUSTÍN M,MORENO-MARCOS P M,et al.Predicting learners' success in a self-paced MOOC through sequence patterns of self-regulated learning[C]//Lifelong Technology-Enhanced Learning:13th European Conference on Technology Enhanced Learning(EC-TEL 2018).Leeds,UK,Springer International Publishing,2018:355-369. [16]OVIATT S,GRAFSGAARD J,CHEN L,et al.Multimodallearning analytics:assessing learners' mental state during the process of learning[M]//The Handbook of Multimodal-Multisensor Interfaces:Signal Processing,Architectures,and Detection of Emotion and Cognition-Volume 2.Association for Computing Machinery and Morgan & Claypool,2018:331-374. [17]GIANNAKOS M N,SHARMA K,PAPPAS I O,et al.Multimodal data as a means to understand the learning experience[J].International Journal of Information Management,2019,48:108-119. [18]BADAVE H,KUBER M.Evaluation of Person Recognition Accuracy based on OpenPose parameters[C]//5th International Conference on Intelligent Computing and Control Systems.Madurai:ICICCS,2021:635-640. [19]ARRIAGA O,VALDENEGRO-TORO M,PLÖGER P.Real-time Convolutional Neural Networks for Emotion and Gender Classification[J].arXiv:1710.07557,2017. [20]XU N,LI S,WU X,et al.An APT Malware Classification Method Based on Adaboost Feature Selection and LightGBM[C]//Sixth International Conference on Data Science in Cyberspace.Shenzhen:IEEE,2021:635-639. [21]ZHOU Y,SONG X,ZHOU M.Supply Chain Fraud PredictionBased on XGBoost Method[C]//2nd International Conference on Big Data,Artificial Intelligence and Internet of Things Engineering.Nanchang:IEEE,2021:539-542. [22]ZHANG X,WU G X.Text Classification Method of DongbaClassics Based on CatBoost Algorithm[C]//The 8th International Symposium on Test Automation & Instrumentation.Online:ISTAI,2020:133-139. [23]HOWARD A G,ZHU M,CHEN B et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J].arXiv:1704.04861V1,2017. [24]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2016:770-778. [25]CHEN B,LIN R,ZOU H.A Short Term Load Periodic Prediction Model Based on GBDT[C]//18th International Conference on Communication Technology.Chongqing:IEEE,2018:1402-1406. |
|