计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 23-29.doi: 10.11896/jsjkx.231200186
彭广川1, 吴飞1, 韩璐1, 季一木2, 荆晓远3
PENG Guangchuan1, WU Fei1, HAN Lu1, JI Yimu2, JING Xiaoyuan3
摘要: 近年来,假新闻的激增对人们的决策过程产生了不利影响。现有的假新闻检测方法大多强调对多模态信息(如文本和图像)的探索和利用。然而,如何为检测任务生成有鉴别性的特征并有效地聚合不同模态的特征以进行假新闻检测,仍然是一个开放性问题。文中提出了一种新颖的假新闻检测模型,即跨模态交互与特征融合网络(Cross-modal Interaction and Feature Fusion Network,CMIFFN)。为了生成有鉴别性的特征,所提方法设计了一个基于监督对比学习的特征学习模块,通过同时进行模态内和模态间的监督对比学习,来确保异类特征相似度更小,同类特征相似度更大。此外,为了挖掘更多有用的多模态信息,所提方法设计了多阶段跨模态交互模块,通过多阶段的跨模态交互,学习带有图结构信息的跨模态交互特征。所提方法引入基于一致性评估的注意力机制,通过学习多模态一致性权重,来有效聚合模态特定特征和跨模态交互特征。在两个基准数据集Weibo和Twitter上的实验表明,CMIFFN明显优于现有的多模态假新闻检测方法。
中图分类号:
[1] KHATTAR D,GOUD J S,GUPTA M,et al.Mvae:Multimodal variational autoencoder for fake news detection[C]//The World Wide Web Conference.2019:2915-2921. [2] CHEN Y,LI D,ZHANG P,et al.Cross-modal ambiguity lear-ning for multimodal fake news detection[C]//The World Wide Web Conference.2022:2897-2905. [3] BOIDIDOU C,PAPADOPOULOS S,ZAMPOGLOU M,et al.Detection and visualization of misleading content on twitter[J].International Journal of Multimedia Information Retrieval,2018,7(1):71-86. [4] JIN Z,CAO J,GUO H,et al.Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//International Conference on Multimedia.2017:795-816. [5] QIAN F,GONG C,SHARMA K,et al.Neural user response generator:Fake news detection with collective user intelligence[C]//International Joint Conference on Artificial Intelligence.2018:3834-3840. [6] AJAO O,GARG A,DA COSTA-ABREU M.Exploring content-based and meta-data analysis for detecting fake news infodemic:a case study on covid-19[C]//International Conference on Pattern Recognition Systems.2022:134-137. [7] NAN Q,CAO J,ZHU Y,et al.Mdfend:Multi-domain fake news detection[C]//ACM International Conference on Information &Knowledge Management.2021:3343-3347. [8] QI P,CAO J,YANG T,et al.Exploiting multi-domain visual information for fake news detection[C]//IEEE International Conference on Data Mining.2019:518-527. [9] WANG Y,MA F,JIN Z,et al.Eann:Event adversarial neural networks for multi-modal fake news detection[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:849-857. [10] ZHANG H,FANG Q,QIAN S,et al.Multi-modal knowledge-aware event memory network for social media rumor detection[C]//ACM International Conference on Multimedia.2019:1942-1951. [11] ZHOU X,WU J,ZAFARANI R.Safe:Similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Discovery and Data Mining.2020:354-367. [12] XUE J,WANG Y,TIAN Y,et al,WEI L.Detecting fake news by exploring the consistency of multimodal data[J].Information Processing & Management,2021,58(5):102610. [13] WU Y,ZHAN P,ZHANG Y,et al.Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics.2021:2560-2569. [14] SINGHAL S,PANDEY T,MREIG S,et al.Leveraging intraand inter modality relationship for multimodal fake news detection[C]//The World Wide Web Conference.2022:726-734. [15] MA J,LIU Y,LIU M,et al.Curriculum contrastive learning for fake news detection[C]//ACM International Conference on Information & Knowledge Management.2022:4309-4313. [16] WANG L,ZHANG C,XU H,et al.Cross-modal contrastivelearning for multimodal fake news detection[J].arXiv:2302.14057,2023. [17] ZHOU Y,YING Q,QIAN Z,et al.Multimodal fake news detection via clip-guided learning[J].arXiv:2022,2205.14304. [18] XU W,WU J,LIU Q,et al.Evidence-aware fake news detection with graph neural networks[C]//The World Wide Web Conference.2022:2501-2510. [19] WU Z,PI D,CHEN J,et al.Rumor detection based on propagation graph neural network with attention mechanism[J].Expert Systems with Applications,2020,158:113595. [20] YANG X,LYU Y,TIAN T,et al.Rumor detection on socialmedia with graph structured adversarial learning[C]//International Joint Conferences on Artificial Intelligence.2021:1417-1423. [21] LU Y,LI C.GCAN:Graph-aware co-attention networks for explainable fake news detection on social media[J].arXiv:2004.11648,2020. |
|