计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 23-29.doi: 10.11896/jsjkx.231200186

• 社交媒体虚假信息检测 • 上一篇    下一篇

基于跨模态交互与特征融合网络的假新闻检测方法

彭广川1, 吴飞1, 韩璐1, 季一木2, 荆晓远3   

  1. 1 南京邮电大学自动化学院、人工智能学院 南京 210003
    2 南京邮电大学计算机学院 南京 210003
    3 武汉大学计算机学院 武汉 430072
  • 收稿日期:2023-12-27 修回日期:2024-04-26 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 吴飞(wufei_8888@126.com)
  • 作者简介:(pgcykny@163.com)
  • 基金资助:
    国家自然科学基金(62076139);之江实验室开放课题(2021KF0AB05);未来网络科研基金项目(FNSRFP-2021-YB-15);南京邮电大学1311人才计划

Fake News Detection Based on Cross-modal Interaction and Feature Fusion Network

PENG Guangchuan1, WU Fei1, HAN Lu1, JI Yimu2, JING Xiaoyuan3   

  1. 1 College of Automationand College of Artificial Intelligence,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
    2 School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
    3 School of Computer Science,Wuhan University,Wuhan 430072,China
  • Received:2023-12-27 Revised:2024-04-26 Online:2024-11-15 Published:2024-11-06
  • About author:PENG Guangchuan,born in 1999,postgraduate.His main research interests include fake news detection and cross-modal hashing.
    WU Fei,born in 1989,Ph.D,professor.His main research interests include pattern recognition and machine learning.
  • Supported by:
    National Natural Science Foundation of China(62076139),Open Research Project of Zhejiang Lab (2021KF0AB05), Future Network Scientific Research Fund Project(FNSRFP-2021-YB-15) and 1311 Talent Program of Nanjing University of Posts and Telecommunications.

摘要: 近年来,假新闻的激增对人们的决策过程产生了不利影响。现有的假新闻检测方法大多强调对多模态信息(如文本和图像)的探索和利用。然而,如何为检测任务生成有鉴别性的特征并有效地聚合不同模态的特征以进行假新闻检测,仍然是一个开放性问题。文中提出了一种新颖的假新闻检测模型,即跨模态交互与特征融合网络(Cross-modal Interaction and Feature Fusion Network,CMIFFN)。为了生成有鉴别性的特征,所提方法设计了一个基于监督对比学习的特征学习模块,通过同时进行模态内和模态间的监督对比学习,来确保异类特征相似度更小,同类特征相似度更大。此外,为了挖掘更多有用的多模态信息,所提方法设计了多阶段跨模态交互模块,通过多阶段的跨模态交互,学习带有图结构信息的跨模态交互特征。所提方法引入基于一致性评估的注意力机制,通过学习多模态一致性权重,来有效聚合模态特定特征和跨模态交互特征。在两个基准数据集Weibo和Twitter上的实验表明,CMIFFN明显优于现有的多模态假新闻检测方法。

关键词: 假新闻检测, 监督对比学习, 多阶段跨模态交互, 图卷积网络

Abstract: In recent years,the surge in fake news has adversely affected people’s decision-making process.Many existing fake news detection methods emphasize the exploration and utilization of multimodal information,such as text and image.However,how to generate discriminative features for the detection task and effectively aggregate features of different modalities for fake news detection remains an open question.In this paper,we propose a novel fake news detection model,i.e.,cross-modal interaction and feature fusion network(CMIFFN).To generate discriminant features,a supervised contrastive learning-based feature learning module is designed.By performing intra-modality and inter-modality supervised contrastive learning simultaneously,it ensures that the similarity of heterogeneous features is smaller and the similarity of similar features is greater.In addition,in order to mine more useful multi-modal information,this paper designs a multi-stage cross-modal interaction module to learn cross-modal interaction features with graph structure information.The method introduces consistency evaluation-based attention me-chanism to effectively aggregate modality-specific features and cross-modal interaction features by learning multi-modal consistency weight.Experiments on two benchmark datasets Weibo and Twitter show that CMIFFN is significantly superior to the state-of-the-art multimodal fake news detection methods.

Key words: Fake news detection, Supervised contrastive learning, Multi-stage cross-modal interaction, Graph convolutional network

中图分类号: 

  • TP391
[1] KHATTAR D,GOUD J S,GUPTA M,et al.Mvae:Multimodal variational autoencoder for fake news detection[C]//The World Wide Web Conference.2019:2915-2921.
[2] CHEN Y,LI D,ZHANG P,et al.Cross-modal ambiguity lear-ning for multimodal fake news detection[C]//The World Wide Web Conference.2022:2897-2905.
[3] BOIDIDOU C,PAPADOPOULOS S,ZAMPOGLOU M,et al.Detection and visualization of misleading content on twitter[J].International Journal of Multimedia Information Retrieval,2018,7(1):71-86.
[4] JIN Z,CAO J,GUO H,et al.Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//International Conference on Multimedia.2017:795-816.
[5] QIAN F,GONG C,SHARMA K,et al.Neural user response generator:Fake news detection with collective user intelligence[C]//International Joint Conference on Artificial Intelligence.2018:3834-3840.
[6] AJAO O,GARG A,DA COSTA-ABREU M.Exploring content-based and meta-data analysis for detecting fake news infodemic:a case study on covid-19[C]//International Conference on Pattern Recognition Systems.2022:134-137.
[7] NAN Q,CAO J,ZHU Y,et al.Mdfend:Multi-domain fake news detection[C]//ACM International Conference on Information &Knowledge Management.2021:3343-3347.
[8] QI P,CAO J,YANG T,et al.Exploiting multi-domain visual information for fake news detection[C]//IEEE International Conference on Data Mining.2019:518-527.
[9] WANG Y,MA F,JIN Z,et al.Eann:Event adversarial neural networks for multi-modal fake news detection[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:849-857.
[10] ZHANG H,FANG Q,QIAN S,et al.Multi-modal knowledge-aware event memory network for social media rumor detection[C]//ACM International Conference on Multimedia.2019:1942-1951.
[11] ZHOU X,WU J,ZAFARANI R.Safe:Similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Discovery and Data Mining.2020:354-367.
[12] XUE J,WANG Y,TIAN Y,et al,WEI L.Detecting fake news by exploring the consistency of multimodal data[J].Information Processing & Management,2021,58(5):102610.
[13] WU Y,ZHAN P,ZHANG Y,et al.Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics.2021:2560-2569.
[14] SINGHAL S,PANDEY T,MREIG S,et al.Leveraging intraand inter modality relationship for multimodal fake news detection[C]//The World Wide Web Conference.2022:726-734.
[15] MA J,LIU Y,LIU M,et al.Curriculum contrastive learning for fake news detection[C]//ACM International Conference on Information & Knowledge Management.2022:4309-4313.
[16] WANG L,ZHANG C,XU H,et al.Cross-modal contrastivelearning for multimodal fake news detection[J].arXiv:2302.14057,2023.
[17] ZHOU Y,YING Q,QIAN Z,et al.Multimodal fake news detection via clip-guided learning[J].arXiv:2022,2205.14304.
[18] XU W,WU J,LIU Q,et al.Evidence-aware fake news detection with graph neural networks[C]//The World Wide Web Conference.2022:2501-2510.
[19] WU Z,PI D,CHEN J,et al.Rumor detection based on propagation graph neural network with attention mechanism[J].Expert Systems with Applications,2020,158:113595.
[20] YANG X,LYU Y,TIAN T,et al.Rumor detection on socialmedia with graph structured adversarial learning[C]//International Joint Conferences on Artificial Intelligence.2021:1417-1423.
[21] LU Y,LI C.GCAN:Graph-aware co-attention networks for explainable fake news detection on social media[J].arXiv:2004.11648,2020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!