计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 179-186.doi: 10.11896/jsjkx.240100009

• 计算机图形学&多媒体 • 上一篇    下一篇

引入双曲正切阈值函数的平稳小波变换心电信号去噪方法

王海勇1,2,3, 丁顾霏1   

  1. 1 南京邮电大学计算机学院 南京 210023
    2 哈尔滨工程大学智能海洋航行器技术全国重点实验室 哈尔滨 150001
    3 南京邮电大学智慧校园研究中心 南京 210023
  • 收稿日期:2024-01-02 修回日期:2024-06-24 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 王海勇(whynjupt@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金(61872190);江苏省博士后科研资助计划(2020Z058);智能海洋航行器技术全国重点实验室稳定支持项目(2024-HYHXQ-WDZC06)

ECG Signal Denoising Method Based on Stationary Wavelet Transform with Hyperbolic TangentThreshold Function

WANG Haiyong1,2,3, DING Gufei1   

  1. 1 College of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
    2 National Key Laboratory of Autonomous Marine Vehicle Technology Laboratory,Harbin Engineering University,Harbin 150001,China
    3 Smart Campus Research Centre,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Received:2024-01-02 Revised:2024-06-24 Online:2025-05-15 Published:2025-05-12
  • About author:WANG Haiyong,born in 1979,Ph.D,senior engineer.His main research interests include network security and computer vision.
  • Supported by:
    National Natural Science Foundation of China(61872190),Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z058) and Stable Supporting Fund of National Key Laboratory of Autonomous Marine Vehicle Technology(2024-HYHXQ-WDZC06).

摘要: 在心电信号的采集过程中,各种噪声充斥在心电信号中,这会使心电信号变得难以识别,从而影响医务人员的诊断。对心电信号进行去噪处理,是心电信号研究的重要环节。基于平稳小波变换的技术,针对平稳小波去噪过程中硬阈值、软阈值的缺陷,提出一种可变参数下的双曲正切函数(SWTaVHT)来对心电信号进行去噪;同时,为了防止在去噪过程中丢失一些高频信息段,引入利用R峰位置信息辅助的修正方法,以更好地保留有用的信号特征。为了评估SWTaVHT的有效性,在公开数据库MIT-BIH上与现有的方法进行对比实验。结果表明,去噪之后的信噪比(SNR)、均方根误差(RMSE)和均方根差百分比(PRD)均优于现有方法。SWTaVHT在不改变原始信号振幅的情况下,对心电信号数据进行去噪处理,其效果优于现有方法。

关键词: 心电信号, 阈值函数, 平稳小波变换, R峰校正, 去噪

Abstract: In the acquisition process of ECG signals,there are various kinds of noise filled in the ECG signals,which will make the ECG signals become difficult to identify,thus affecting the diagnosis of medical personnel.Denoising the ECG signal is an important part of ECG signal research.This paper adopts the technique based on stationary wavelet transform,aiming at the defects of hard threshold and soft threshold in the denoising process of stationary wavalet transform,a hyperbolic tangent function withvariable parameters(SWTaVHT) is proposed for denoising ECG signals.Moreover,in order to prevent the loss of some high frequency information segments in the process of denoising,the R-peak location information assisted correction method is used to better retain useful signal features.In order to evaluate the effectiveness of SWTaVHT,experiments are conducted on the public database MIT-BIH for a comparative study with existing methods.Experimental results show that the signal-to-noise ratio(SNR),root-mean-square error(RMSE) and percentage root-mean-square difference(PRD) after denoising are better compared to the existing methods.The SWTaVHT denoises the ECG data without changing the amplitude of the original signals,which is better than the existing methods.

Key words: Electrocardiogram(ECG), Threshold function, Stationary wavelet transform, R-peaks correction, Denoising

中图分类号: 

  • TP391.9
[1]CHATTERJEE S,THAKUR R S,YADAV R N,et al.Review of noise removal techniques in ECG signals[J].IET Signal Processing,2020,14(9):569-590.
[2]BHASKAR P,UPLANE M.High frequency electromyogramnoise removal from electrocardiogram using FIR low pass filter based on FPGA[J].Procedia Technology,2016,25:497-504.
[3]KHER R.Signal processing techniques for removing noise from ECG signals[J].Journal of Biomedical Engineering and Researc,2019,3(101):1-9.
[4]SINGHAL A,SINGH P,FATIMAH B,et al.An efficient re-moval of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique[J].Biomedical Signal Processing and Control,2020,57:101741.
[5]KRISHNAN S R,SEELAMANTULA C S.On the selection of optimum Savitzky-Golay filters[J].IEEE Transactions on Signal Processing,2012,61(2):380-391.
[6]MOEIN S.An MLP neural network for ECG noise removalbased on Kalman filter[C]//Advances in Computational Biology.2010:109-116.
[7]RAKSHIT M,DAS S.An efficient ECG denoising methodology using empirical mode decomposition and adaptive switching mean filter[J].Biomedical Signal Processing and Control,2018,40:140-148.
[8]KUMAR A,KOMARAGIRI R,KUMAR M.Design of wavelet transform based electrocardiogram monitoring system[J].ISA Transactions,2018,80:381-398.
[9]DEEPAK B,VANDANA C R,SOURYA D,et al.Motion Artifact Removal in Ambulatory ECG Signal for Heart Rate Variability Analysis[J].IEEE Sensors Journal,2019,19(24):12432-12442.
[10]MADAN P,SINGH V,SINGH D P,et al.Denoising of ECGsignals using weighted stationary wavelet total variation[J].Biomedical Signal Processing and Control,2022,73:103478.
[11]KUMAR A,TOMAR H,MEHLA V K,et al.Stationary wavelet transform based ECG signal denoising method[J].ISA Tran-sactions,2021,114:251-262.
[12]MERAH M,ABDELMALIK T,LARBI B.R-peaks detectionbased on stationary wavelet transform[J].Computer Methods and Programs in Biomedicine,2015,121(3):149-160.
[13]STEPHANE M.A wavelet tour of signal processing[M].Elsevier,1999.
[14]BAYER F M,KOZAKEVICIUS A J,CINTRA R J.An iterative wavelet threshold for signal denoising[J].Signal Processing,2019,162:10-20.
[15]GAO L,GAN Y,SHI J.A novel intelligent denoising method of ecg signals based on wavelet adaptive threshold and mathematical morphology[J].Applied Intelligence,2022,52(9):10270-10284.
[16]SAVITZKY A,GOLAY M J.Smoothing and differentiation of data by simplified least squares procedures[J].Analytical Chemis-try,1964,36(8):1627-1639.
[17]PAN J,TOMPKINS W J.A real-time QRS detection algorithm[J].IEEE Transactions on Biomedical Engineering,1985(3):230-236.
[18]NAYAK C,SAHA S K,KAR R,et al.Automated QRS complex detection using MFO-based DFOD[J].IET Signal Proces-sing,2018,12(9):1172-1184.
[19]BODA S,MAHADEVAPPA M,DUTTA P K.A hybrid method for removal of power line interference and baseline wander in ECG signals using EMD and EWT[J].Biomedical Signal Processing and Control,2021,67:102466.
[20]LI C,WU Y,LIN H,et al.ECG denoising method based on an improved VMD algorithm[J].IEEE Sensors Journal,2022,22(23):22725-22733.
[21]NAYAK J,SWAPNAREKHA H,NAIK B,et al.25 years of particle swarm optimization:Flourishing voyage of two decades[J].Archives of Computational Methods in Engineering,2023,30(3):1663-1725.
[22]KUO R,LI S S.Applying particle swarm optimization algo-rithm-based collaborative filtering recommender system considering rating and review[J].Applied Soft Computing,2023,135:110038.
[23]MOODY G B,MARK R G.The impact of the MIT-BIH arrhythmia database[J].IEEE Engineering in Medicine and Biology Magazine,2001,20(3):45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!