计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 1-7.doi: 10.11896/jsjkx.240100023
所属专题: 联邦学习
郑剑文1, 刘波1, 林伟伟2,3, 谢家晨1
ZHENG Jianwen1, LIU Bo1, LIN Weiwei2,3, XIE Jiachen1
摘要: 作为一种分布式机器学习范式,联邦学习(Federated Learning,FL)旨在在保护数据隐私的前提下,实现在多方数据上共同训练机器学习模型。在实际应用中,FL在每轮迭代中需要大量的通信来传输模型参数和梯度更新,从而提高通信效率,这是FL面临的一个重要挑战。文中主要介绍了FL中通信效率的重要性,并依据不同的侧重点将现有FL通信效率的研究分为客户端选择、模型压缩、网络拓扑重构以及多种技术结合等方法。在现有的FL通信效率研究的基础上,归纳并总结出通信效率在FL发展中面临的困难与挑战,探索FL通信效率未来的研究方向。
中图分类号:
[1]ZHANG C,XIE Y,BAI H,et al.A survey on federated learning[J].Knowledge-Based Systems,2021,216:106775. [2]MAMMEN P M.Federated learning:Opportunities and challenges [EB/OL].(2021-01-14) [2024-03-12].https://arxiv.org/abs/2101.05428. [3]SHAHID O,POURIYEH S,PARIZI R M,et al.Communication efficiency in federated learning:Achievements and challenges [EB/OL].(2021-07-23)[2024-03-12].https://arxiv.org/abs/2107.10996. [4]ASAD M,MOUSTAFA A,ITO T,et al.Evaluating the communication efficiency in federated learning algorithms[C]//2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design(CSCWD).IEEE,2021:552-557. [5]WEN J,ZHANG Z,LAN Y,et al.A survey on federated lear-ning:challenges and applications[J].International Journal of Machine Learning and Cybernetics,2023,14(2):513-535. [6]KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advances and open problems in federated learning[J].Foundations and Trends in Machine Learning,2021,14(1/2):214-217. [7]LIU B,LV N,GUO Y,et al.Recent Advances on Federated Learning:A Systematic Survey[EB/OL].(2023-01-03)[2024-03-12].https://arxiv.org/abs/2301.01299. [8]POURIYEH S,SHAHID O,PARIZI R M,et al.Securesmart communication efficiency in federated learning:Achievements and challenges[J].Applied Sciences,2022,12(18):8980. [9]SHAHEEN M,FAROOQ M S,UMER T,et al.Applications of federated learning;Taxonomy,challenges,and research trends[J].Electronics,2022,11(4):670. [10]WNAG L P,WEI W,LI B.CMFL:Mitigating communicationoverhead for federated learning[C]//2019 IEEE 39th International Conference on Distributed Computing Systems(ICDCS).IEEE,2019:954-964. [11]LI C,ZENG X,ZHANG M,et al.PyramidFL:A fine-grainedclient selection framework for efficient federated learning[C]//Proceedings of the 28th Annual International Conference on Mobile Computing and Networking.2022:158-171. [12]WANG H,KAPLAN Z,NIU D,et al.Optimizing federatedlearning on non-iid data with reinforcement learning[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications.IEEE,2020:1698-1707. [13]NISHIO T,YONETANI R.Client selection for federated lear-ning with heterogeneous resources in mobile edge[C]//2019 IEEE International Conference on Communications(ICC).IEEE,2019:1-7. [14]DU C,XIAO J,GUO W.Bandwidth constrained client selection and scheduling for federated learning over SD-WAN[J].IET Communications,2022,16(2):187-194. [15]XU J,DU W,JIN Y,et al.Ternary compression for communication-efficient federated learning[J].IEEE Transactions on Neural Networks and Learning Systems,2020,33(3):1162-1176. [16]MALEKIJOO A,FADAEIESLAM M J,MALEKIJOU H,et al.Fedzip:A compression framework for communication-efficient federated learning[EB/OL].(2021-02-02)[2024-03-12].https://arxiv.org/abs/2102.01593. [17]AJI A F,HEAFIELD K.Sparse Communication for Distributed Gradient Descent[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:440-445. [18]HUFFMAN D A.A method for the construction of minimum-redundancy codes[J].Proceedings of the IRE,1952,40(9):1098-1101. [19]ZHU X,WANG J,CHEN W,et al.Model compression and privacy preserving framework for federated learning[J].Future Generation Computer Systems,2023,140:376-389. [20]ZHAO J,ZHU H,WANG F,et al.CORK:A privacy-preserving and lossless federated learning scheme for deep neural network[J].Information Sciences,2022,603:190-209. [21]HE Y,WANG H P,ZENK M,et al.CosSGD:Communication-efficient federated learning with a simple cosine-based quantization [EB/OL].(2020-12-15)[2024-03-12].https://arxiv.org/abs/2012.08241. [22]HU C,JIANG J,WANG Z.Decentralized federated learning:A segmented gossip approach[EB/OL].(2019-08-21)[2024-03-12].https://arxiv.org/abs/1908.07782. [23]WANG Z,HU Y,YAN S,et al.Efficient ring-topology decentralized federated learning with deep generative models for medical data in ehealthcare systems[J].Electronics,2022,11(10):1548. [24]ABDELLATIF A A,MHAISEN N,MOHAMED A,et al.Communication-efficient hierarchical federated learning for IoT he-terogeneous systems with imbalanced data[J].Future Generation Computer Systems,2022,128:406-419. [25]LU X,LIAO Y,LIO P,et al.Privacy-preserving asynchronousfederated learning mechanism for edge network computing[J].IEEE Access,2020,8:48970-48981. [26]LIU S,YU G,YIN R,et al.Joint model pruning and device selection for communication-efficient federated edge learning[J].IEEE Transactions on Communications,2021,70(1):231-244. [27]BUYUKATES B,ULUKUS S.Timely communication in fede-rated learning[C]//IEEE Conference on Computer Communications Workshops(INFOCOM WKSHPS).IEEE,2021:1-6. [28]CALDAS S,KONECNY J,MCMAHAN H B,et al.Expanding the reach of federated learning by reducing client resource requirements[EB/OL].(2018-12-18)[2024-03-12].https://ar-xiv.org/abs/1812.07210. [29]CHEN Y,SUN X,JIN Y.Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(10):4229-4238. [30]PARK S,SUH Y,LEE J.FedPSO:Federated learning using particle swarm optimization to reduce communication costs[J].Sensors,2021,21(2):600. [31]MILLS J,HU J,MIN G.Communication-efficient federatedlearning for wireless edge intelligence in IoT[J].IEEE Internet of Things Journal,2019,7(7):5986-5994. [32]ASAD M,MOUSTAFA A,ITO T.FedOpt:Towards communication efficiency and privacy preservation in federated learning[J].Applied Sciences,2020,10(8):2864. [33]LI C,LI G,VARSHNEY P K.Communication-efficient federated learning based on compressed sensing[J].IEEE Internet of Things Journal,2021,8(20):15531-15541. [34]WU C,WU F,LYU L,et al.Communication-efficient federated learning via knowledge distillation[J].Nature Communications,2022,13(1):2032. [35]ZHU H,JIN Y.Multi-objective evolutionary federated learning[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(4):1310-1322. [36]MARFOQ O,XU C,NEGLIA G,et al.Throughput-optimal topology design for cross-silo federated learning[J].Advances in Neural Information Processing Systems,2020,33:19478-19487. [37]GUPTA R,ALAM T.Survey on federated-learning approaches in distributed environment[J].Wireless Personal Communications,2022,125(2):1631-1652. [38]ZHANG J,ZHU H,WANG F,et al.Security and privacythreats to federated learning:Issues,methods,and challenges[J].Security and Communication Networks,2022,2022(1):2886795. [39]SONG D,SHEN G,GAO D,et al.Fast heterogeneous federated learning with hybrid client selection[C]//Uncertainty in Artificial Intelligence.PMLR,2023:2006-2015. [40]XUE Y,LAU V.Riemannian Low-Rank Model Compression for Federated Learning with Over-the-Air Aggregation[J/OL].https://onlinelibrary.wiley.com/doi/10.1155/2022/2886795. [41]ZITZLER E,LAUMANNS M,THIELE L.SPEA2:Improving the strength Pareto evolutionary algorithm[C]//Proceedings of the EUROGEN'2001.2001. [42]COELLO C A C,LECHUGA M S.MOPSO:A proposal formultiple objective particle swarm optimization[C]//Procee-dings of the 2002 Congress on Evolutionary Computation,CEC'02(Cat,No,02TH8600).IEEE,2002,2:1051-1056. [43]PUTRA M A P,PUTRI A R,ZAINUDIN A,et al.Acs:Accuracy-based client selection mechanism for federated industrial iot[J].Internet of Things,2023,21:100657. [44]RAI S,KUMARI A,PRASAD D K.Client selection in federatedlearning under imperfections in environment[J].AI,2022,3(1):124-145. [45]CHAI Z Y,YANG C,LI Y L.Communication efficiency optimization in federated learning based on multi-objective evolutio-nary algorithm[J].Evolutionary Intelligence,2023,16(3):1033-1044. |
|