计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 338-348.doi: 10.11896/jsjkx.240100091
郑龙海1,2,3, 肖博怀1,2,3, 姚泽玮1,2,3, 陈星1,2,3, 莫毓昌4
ZHENG Longhai1,2,3, XIAO Bohuai1,2,3, YAO Zewei1,2,3, CHEN Xing1,2,3, MO Yuchang4
摘要: 在移动边缘计算中,设备通过将计算密集型任务卸载到附近边缘服务器,可以有效减少应用程序的延迟和能耗。为了提高服务质量,边缘服务器之间需要协作而非单独工作。针对多边缘协作的负载均衡问题,现有的策略往往依赖于精确的数学模型或缺乏对边缘拓扑关系的利用。为了解决此问题,文中提出了一种基于图强化学习的卸载决策方法。首先将多边缘协作的负载均衡场景抽象为图数据;然后采用基于图卷积神经网络的图嵌入过程来提取图的信息特征,以辅助深度Q网络进行卸载决策;最后通过集中反馈控制机制找到目标负载均衡方案。在多个场景下进行仿真实验,实验结果验证了所提方法在缩短任务平均响应时延方面的有效性,并且可以在短时间内获得优于对比算法且接近理想方案的负载均衡效果。
中图分类号:
[1]YAO Z,LIN J,HU J,et al.PSO-GA based approach to multi-edge load balancing[J].Computer Science,2021,48(S2):456-463. [2]XU J,CHEN L,REN S.Online learning for offloading and autoscaling in energy harvesting mobile edge computing[J].IEEE Transactions on Cognitive Communications and Networking,2017,3(3):361-373. [3]ALASMARI K R,GREEN R C,ALAM M.Mobile edge offloa-ding using markov decision processes[C]//Edge Computing-EDGE 2018:Second International Conference,Held as Part of the Services Conference Federation,SCF 2018,Seattle,WA,USA,June 25-30,2018,Proceedings 2.Springer International Publishing,2018:80-90. [4]SUN Z,MO Y,YU C.Graph reinforcement learning based taskoffloading for multi-access edge computing[J].IEEE Internet of Things Journal,2023,10(4):3138-3150. [5]CABRERA A,ACOSTA A,ALMEIDA F,et al.A dynamicmulti-objective approach for dynamic load balancing in heterogeneous systems[J].IEEE Transactions on Parallel and Distributed Systems,2020,31(10):2421-2434. [6]MEHRABI A,SIEKKINEN M,YLÄ-JÄÄSKI A.Edge computing assisted adaptive mobile video streaming[J].IEEE Transactions on Mobile Computing,2018,18(4):787-800. [7]WANG Z,ZHANG W,JIN X,et al.An optimal edge serverplacement approach for cost reduction and load balancing in intelligent manufacturing[J].The Journal of Supercomputing,2022,78(3):4032-4056. [8]YANG L,YAO H,WANG J,et al.Multi-UAV-enabled load-balance mobile-edge computing for IoT networks[J].IEEE Internet of Things Journal,2020,7(8):6898-6908. [9]JIA M,LIANG W,XU Z,et al.Qos-aware cloudlet load balancing in wireless metropolitan area networks[J].IEEE Transactions on Cloud Computing,2018,8(2):623-634. [10]TRAN T X,POMPILI D.Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J].IEEE Transactions on Vehicular Technology,2018,68(1):856-868. [11]XU X,LIU K,DAI P,et al.Joint task offloading and resource optimization in noma-based vehicular edge computing:A game-theoretic drl approach[J].Journal of Systems Architecture,2023,134:102780. [12]LIU Q,XIA T,CHENG L,et al.Deep reinforcement learning for load-balancing aware network control in IoT edge systems[J].IEEE Transactions on Parallel and Distributed Systems,2021,33(6):1491-1502. [13]LI J,LUO G,CHENG N,et al.An end-to-end load balancer based on deep learning for vehicular network traffic control[J].IEEE Internet of Things Journal,2018,6(1):953-966. [14]XU Y,XU W,WANG Z,et al.Load balancing for ultradensenetworks:A deep reinforcement learning-based approach[J].IEEE Internet of Things Journal,2019,6(6):9399-9412. [15]CHEN X,HU J,CHEN Z,et al.A reinforcement learning-empowered feedback control system for industrial internet of things[J].IEEE Transactions on Industrial Informatics,2021,18(4):2724-2733. [16]LI J,GAO H,LV T,et al.Deep reinforcement learning basedcomputation offloading and resource allocation for MEC[C]//2018 IEEE Wireless Communications and Networking Confe-rence(WCNC).IEEE,2018:1-6. [17]ZHANG S,GU H,CHI K,et al.Drl-based partial offloading for maximizing sum computation rate of wireless powered mobile edge computing network[J].IEEE Transactions on Wireless Communications,2022,21(12):10934-10948. [18]LI K,NI W,YUAN X,et al.Deep-Graph-Based Reinforcement Learning for Joint Cruise Control and Task Offloading for Aerial Edge Internet of Things(EdgeIoT)[J].IEEE Internet of Things Journal,2022,9(21):21676-21686. [19]CHEN J,YANG Y,WANG C,et al.Multitask offloading strategy optimization based on directed acyclic graphs for edge computing[J].IEEE Internet of Things Journal,2021,9(12):9367-9378. [20]DAI A,LI R,ZHAO Z,et al.Graph convolutional multi-agentreinforcement learning for UAV coverage control[C]//2020 International Conference on Wireless Communications and Signal Processing(WCSP).IEEE,2020:1106-1111. [21]ZHANG J,DU J,SHEN Y,et al.Dynamic computation offloa-ding with energy harvesting devices:A hybrid-decision-based deep reinforcement learning approach[J].IEEE Internet of Things Journal,2020,7(10):9303-9317. [22]GAO Z,YANG L,DAI Y.Fast Adaptive Task Offloading and Resource Allocation in Large-Scale MEC Systems via Multi-Agent Graph Reinforcement Learning[J].IEEE Internet of Things Journal,2023,11(1):758-776. [23]CAO X,TANG G,GUO D,et al.Edge federation:Towards an integrated service provisioning model[J].IEEE/ACM Transactions on Networking,2020,28(3):1116-1129. [24]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Human-level control through deep reinforcement learning[J].Nature,2015,518(7540):529-533. [25]WANG S,ZHAO Y,XU J,et al.Edge server placement in mobile edge computing[J].Journal of Parallel and Distributed Computing,2019,127:160-168. [26]WANG S,ZHAO Y,HUANG L,et al.QoS prediction for ser-vice recommendations in mobile edge computing[J].Journal of Parallel and Distributed Computing,2019,127:134-144. [27]GUO Y,WANG S,ZHOU A,et al.User allocation-aware edge cloud placement in mobile edge computing[J].Software:Practice and Experience,2020,50(5):489-502. [28]WANG S,GUO Y,ZHANG N,et al.Delay-aware microservice coordination in mobile edge computing:A reinforcement learning approach[J].IEEE Transactions on Mobile Computing,2019,20(3):939-951. [29]VILAPLANA J,SOLSONA F,TEIXIDÓ I,et al.A queuingtheory model for cloud computing[J].The Journal of Supercomputing,2014,69:492-507. [30]CHEN X,YAO Z,CHEN Z,et al.Load Balancing for Multi-Edge Collaboration in Wireless Metropolitan Area Networks:A Two-Stage Decision-Making Approach[J].IEEE Internet of Things Journal,2023,10(19):17124-17136. [31]WU Y,GUO K,HUANG J,et al.Secrecy-based energy-efficient data offloading via dual connectivity over unlicensed spectrums[J].IEEE Journal on Selected Areas in Communications,2016,34(12):3252-3270. |
|