计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 138-146.doi: 10.11896/jsjkx.240100131
吴杰, 万源, 刘秋杰
WU Jie, WAN Yuan, LIU Qiujie
摘要: 子空间聚类方法为高维多视角数据的聚类问题提供了有效的解决方案。针对现有算法利用低秩或稀疏约束通过模型的特定性质不能使得表示矩阵直接具有块对角性的问题,提出了一致块对角和限定的多视角子空间聚类算法(CBDE-MSC)。CBDE-MSC将各个视角的子空间表示矩阵分解为一致自表示矩阵和特定自表示矩阵。对于一致自表示矩阵,使用块对角约束使其具有近似的块对角结构,探索数据的一致性;对于特定自表示矩阵,在其间施加限定性约束,探索数据的互补性。使用矩阵L2,1范数约束误差矩阵,使其满足行稀疏。此外,使用交替方向乘子法(ADMM)优化目标函数。采用归一化互信息(NMI)、正确率(ACC)、调整兰德指数(AR)和F分数(F-score)等评价指标,对CBDE-MSC进行了评估。实验结果表明,CBDE-MSC与现有的一些优良算法相比,4个指标的结果均有较大的提升,尤其是在YaleB数据集上,相比于经典方法CSMSC,其NMI,ACC,AR和F-score分别提升了0.088,0.127,0.145和0.122。实验结果验证了所提算法的有效性。
中图分类号:
[1]TAN X,TRIGGS B.Fusing Gabor and LBP feature sets for kernel-based face recognition[C]//International Wrokshop on Analysis and Modeling of Faces and Gestures.Berlin:Springer,2007:235-249. [2]WANG X,HAN T X,YAN S.An HOP-LBP human detectorwith partial occlusion handling[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:32-39. [3]KUMAR A,DAUMÉ H.A co-training approach for multi-view spectral clustering[C]//Proceedings of the 28th International Conference on Machine Learning.Madison,WI:Omnipress,2011:393-400. [4]YU S,KRISHNAPURAM B,ROSALES R,et al.Bayesian co-training[J].Journal of Machine Learning Research,2011,12(3):2649-2680. [5]WANG W,ZHOU Z H.A new analysis of co-training[C]//Proceedings of the 27th International Conference on Machine Learning.Madison,WI:Omnipress,2010:2-3. [6]GÖNEN M,ALPAYDIN E.Multiple kernel learning algorithms[J].The Journal of Machine Learning Research,2011,12(4):2211-2268. [7]KANG Z,SHI G,HUANG S D,et al.Multi-graph fusion formulti-view spectral clustering[J].Knowledge-Based Systems,2020,189(2):105102. [8]CAO X C,ZHANG C Q,FU H Z,et al.Diversity-induced multi-view subspace clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2015:586-594. [9]NG A Y,JORDAN M I,WEISS Y.On spectral clustering:analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2002:849-856. [10]LIU G C,YAN S C.Latent low-Rank representation for sub-space segmentation and feature extraction[C]//2011 IEEE 13th International Conference on Computer Vision.IEEE,2011:1615-1622. [11]LIU G C,LIN Z C,YU Y.Robust subspace segmentation by low-rank representation[C]//Proceedings of the 27th International Conference on Machine Learning.Haifa:OMNI Press,2010:663-670. [12]XIA G Y,SUN H J,FENG L,et al.Human motion segmentation via robust kernel sparse subspace clustering [J].IEEE Transactions on Image Processing,2018,27(1):135-105. [13]JI P,ZHONG Y R,LI H D,et al.Null space clustering with applications to motion segmentation and face clustering [C]//Proceedings of the 2014 IEEE International Conference on Image Processing.Piscataway:IEEE,2014:283-287. [14]MA Y,DERKSEN H,HONG W,et al.Segmentation of multivariate mixed data via lossy data coding and compression[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1546-1562. [15]ELHAMIFAR E,VIDAL R.Sparse subspace clustering:algorithm,theory,and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(11):2765-2781. [16]LIU G C,LIN Z C,YAN S C,et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):171-184. [17]LI C G,VIDAL R.Structured sparse subspace clustering:a unified optimization framework[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2015:277-286. [18]LU C Y,FENG J S,LIN Z C,et al.Subspace clustering by block diagonal representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(2):287-501. [19]ZHANG C Q,HU Q H,FU H Z,et al.Latent multi-view subspace clustering[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:4279-4287. [20]LUO S R,ZHANG C Q,ZHANG W,et al.Consistent and specific multi-view subspace clustering[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Menlo Park,CA:AAAI Press,2018:3730-3737. [21]WANG X,GUO X,LEI Z,et al.Exclusivity-consistency regularized multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:923-931. [22]HAN T H,NIU S J,GAO X Z,et al.Deep low-rank graph con-volutional subspace clustering for hyperspectral image[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-13. [23]LI S,LIU L,LIU J,et al.SC-GAN:Subspace clustering based GAN for automatic expression manipulation[J].Pattern Recognition,2023,134:109072. [24]YANG X J,YAN J C,CHENG Y,et al.Learning Deep Generative Clustering via Mutual Information Maximization[J].IEEE Transactions on Neural Networks and Learning Systems,2023,34(9):6263-6275. [25]LV J C,KANG Z,LU X,et al.Pseudo-supervised deep subspace clustering[J].IEEE Transactions on Image Processing,2021,30:5252-5263. [26]Convex optimization & Euclidean distance geometry[EB/OL].https://www.convexoptimization.com/TOOLS/0976401304.pdf. [27]SI X M,YIN Q Y,ZHAO X J,et al.Consistent and diverse multi-View subspace clustering with structure constraint[J].Pattern Recognition,2022,121:108196. [28]XIA R K,PAN Y,DU L,et al.Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI,2014:2149-2155. [29]ZHOU T,ZHANG C Q,PENG X,et al.Dual shared-specific multi-view subspace clustering [J].IEEE Transactions on Cybernetics,2020,50(8):3517-3530. [30]JIANG B,QIU F Y,WANG L P,et al.Bi-level weighted multi-view clustering via hybrid particle swarm optimization [J].Information Processing & Management,2016,52(3):387-398. [31]LIU W Z,JIANG L,LIU D,et al.Tensorial Multi-Linear Multi-View Clustering via Schatten-p Norm[J].IEEE Access,2023,11:11132-11142. |
|