计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 304-312.doi: 10.11896/jsjkx.240100139
袁立宁1,2, 冯文刚1, 刘钊3
YUAN Lining1,2, FENG Wengang1, LIU Zhao3
摘要: 多数图卷积网络(GCN)模型通过设计高效的信息传递和保留方式提升节点分类任务的实验表现,忽略了节点标签信息在拓扑空间和属性空间的传播。针对上述问题,提出了一种基于标签传播算法(LPA)增强的多通道图卷积模型MGCN-LPA,同时增大同类节点在属性和拓扑空间的关系权重,改善节点间特征和标签信息的传播。首先,计算不同节点的属性相似度值,并采用k近邻算法生成属性关系图;然后,利用结合了GCN和LPA的图卷积层GCN-LPA提取属性图和属性关系图的潜在特征,生成拓扑节点表示和属性节点表示;最后,将拓扑和属性表示进行融合,并将生成的最终表示用于节点分类任务。在3个基准图数据集上进行实验,MGCN-LPA的实验表现能够匹配当前较为先进的基线模型,其在Cora和Citeseer数据集上的分类结果相比表现最优的基线模型提升了9.3%和12%。上述实验结果表明,MGCN-LPA能够增大同类节点间路径的权重,从而增强同类节点间的信息传递,提升节点分类任务的实验表现。此外,消融实验结果表明,与仅使用拓扑空间或者属性空间信息的变体相比,融合两类信息的MGCN-LPA能够充分提取和保留原始图中蕴含的潜在特征,提升模型的表征能力和泛化性。
中图分类号:
[1]MCLAREN C D,BRUNER M W.Citation network analysis[J].International Review of Sport and Exercise Psychology,2022,15(1):179-198. [2]GHAREHCHOPOGH F S.An improved Harris Hawks optimi-zation algorithm with multi-strategy for community detection in social network[J].Journal of Bionic Engineering,2023,20(3):1175-1197. [3]ZOU M,GAN Z,CAO R,et al.Similarity-navigated graph neural networks for node classification[J].Information Sciences,2023,633:41-69. [4]NASIRI E,BERAHMAND K,LI Y.Robust graph regularization nonnegative matrix factorization for link prediction in attributed networks[J].Multimedia Tools and Applications,2023,82(3):3745-3768. [5]XU M.Understanding graph embedding methods and their applications[J].SIAM Review,2021,63(4):825-853. [6]BHATTI U A,TANG H,WU G,et al.Deep learning withgraph convolutional networks:An overview and latest applications in computational intelligence[J/OL].International Journal of Intelligent Systems,2023:1-28.https://dl.acm.org/doi/abs/10.1155/2023/8342104. [7]LI C H,ZHU X F.Dual-channel graph random convolutionalnetworks for semi-supervised node classification[J].Journal of Chinese Computer Systems,2023,44(8):1656-1664. [8]GUO M H,XU T X,LIU J J,et al.Attention mechanisms incomputer vision:A survey[J].Computational Visual Media,2022,8(3):331-368. [9]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[EB/OL].[2023-12-12].https://arxiv.org/abs/1710.10903v3. [10]LI B,JING B,TONG H,et al.Graph communal contrastivelearning[C]//Proceedings of the 22nd International Conference on World Wide Web.New York:ACM,2022:1203-1213. [11]XUE L,NONG L P,ZHANG W H,et al.An improved graph convolution network semi-supervised node classification[J].Computer Applications and Software,2021,38(10):153-158,163. [12]RAGHAVAN U N,ALBERT R,KUMARA S.Near linear time algorithm to detect community structures in large-scale networks[J].Physical Review E,2007,76(3):036106. [13]WANG H,LESKOVEC J.Unifying Graph Convolutional Neural Networks and Label Propagation[EB/OL].[2023-12-12].https://arxiv.linfen3.top/abs/2002.06755v1. [14]CUNNINGHAM P,DELANY S J.k-Nearest neighbor classi-fiers-A Tutorial[J].ACM Computing Surveys(CSUR),2021,54(6):1-25. [15]LIU J Q,TU W X,ZHU E.Survey on graph convolutional neural network[J].Computer Engineering & Science,2023,45(8):1472-1481. [16]ZHANG L Y,SUN H H,SHI B B.Review of node classification methods based on graph convolutional neural networks[J/OL].Computer Science,2023:1-19.http://kns.cnki.net/kcms/detail/50.1075.TP.20230925.1655.162.html. [17]WU F,SOUZA A,ZHANG T,et al.Simplifying graph convolutional networks[C]//Proceedings of the 36th International Conference on Machine Learning.Cambridge:PMLR,2019:6861-6871. [18]TAILOR S A,OPOLKA F,LIO P,et al.Do we need anisotropic graph neural networks?[C]//Proceedings of the 2022 International Conference on Learning Representations.Open-Review.net,2022:1-19. [19]BRODY S,ALON U,YAHAV E.How attentive are graph attention networks?[C]//Proceedings of the 2022 International Conference on Learning Representations.OpenReview.net,2022:1-26. [20]GUO X C,ZHANG W Y,XIA Z X.Two-way data augmentation graph convolutional networks[J].Computer Engineering and Design,2023,44(8):2345-2351. [21]RANI V,NABI S T,KUMAR M,et al.Self-supervised Lear-ning:A Succinct Review[J].Archives of Computational Me-thods in Engineering,2023,30(4):2761-2775. [22]LI Y Q,WANG J,WANG F,et al.Semi-Supervised Node Classification Algorithm Based on Hierarchical Contrastive Learning[J].Pattern Recognition and Artificial Intelligence,2023,36(8):712-720. [23]ZHONG L,YANG J,CHEN Z,et al.Contrastive graph convolutional networks with generative adjacency matrix[J].IEEE Transactions on Signal Processing,2023,71:772-785. [24]HUANG J,DU L,CHEN X,et al.Robust mid-pass filteringgraph convolutional networks[C]//Proceedings of the 2023 International World Wide Web Conference.New York:ACM,2023:328-338. [25]NIE S M,DU Y H,LU T L,et al.Survey on local community detection algorithms[J].Software Guide,2020,19(5):271-275. [26]WANG X,ZHU M,BO D,et al.Am-gcn:Adaptive multi-channel graph convolutional networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.New York:ACM,2020:1243-1253. [27]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[EB/OL].[2023-12-19].https://arxiv.org/abs/1609.02907v4. [28]YUAN L N,LI X,WANG X D,et al.Graph embedding models:a survey[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):59-87. [29]HU Y,YOU H,WANG Z,et al.Graph-mlp:node classification without message passing in graph[EB/OL].[2023-12-19].https://arxiv.org/abs/2106.04051v1. [30]ZHENG W P,GE H L,LIU M L,et al.Node classification algorithm fusing 2-connected motif-structure information[J/OL].Journal of Computer Applications,2023:1-10.http://kns.cnki.net/kcms/detail/51.1307.tp.20230816.1507.006.html. [31]ZENG J X,WANG P H,DING Y D,et al.Graph neural network based node embedding enhancement model for node classification[J].Journal of Zhe Jiang University(Engineering Science),2023,57(2):219-225. [32]CAI T T,MA R.Theoretical foundations of t-SNE for visualizing high-dimensional clustered data[J].The Journal of Machine Learning Research,2022,23(1):13581-13634. |
|