计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 194-201.doi: 10.11896/jsjkx.240100144
周意, 毛宽民
ZHOU Yi, MAO Kuanmin
摘要: 非接触式牛只个体识别方法在节约识别成本、简化识别流程和提升识别精度方面具有一定的优势,近年来在牛只个体识别领域有了充分的发展。但现有的研究中存在着识别准确率受环境和天气等外部因素影响过大、模型迁移训练困难等问题。针对上述问题,基于YOLO-Unet组合网络提出了包含3个模块的牛只个体识别模型。首先,根据YOLOv5模型构建图像提取模块,用以提取牛只面部图像;随后,采用Unet模型构建背景消去模块,用以去除牛只面部图像背景,以消除环境影响,进而提升模型泛化性能;最后,使用MobileNetV3构建个体分类模块,对经背景消去后的牛只面部图像进行分类。对背景消去模块进行了消融实验,实验结果表明,引入背景消去模块能极大地提升模型泛化性能。引入背景消去模块的模型在测试集上的识别准确率为90.48%,相较于未引入背景消去模块的模型提升了11.99%。
中图分类号:
[1]XU B B,WANG W S,GUO L F,et al.A Review and Future Prospects on Cattle Recognition Based on Non-contact Identification[J].Journal of Agricultural Science and Technology,2020,22(7):79-89. [2]SONG Y F,WANG J,LI J L,et al.Review of individual identification methods for cattle in precision breeding mode[J].Heilongjiang Animal Science and Veterinary Medicine,2021,(22):48-53,148-149. [3]DU Z W,ZHOU H,LI C Y,et al.Small Object Detection Based on Deep Convolution Neural Networks:A Review[J].Computer Science,2022,49(12):205-218. [4]YU J Y,DING P C,WANG C.Overview:Application of Convolution Neural Network in Object Detection[J].Computer Science,2018,45(S2):17-26. [5]HARRIS C G,STEPHENS M.A Combined Corner and Edge Detector[C]//Alvey Vision Conference.1988:1-6. [6]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2005:886-893. [7]OJALA T,PIETIKAINEN M,MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [8]HEARST M A,DUMAIS S T,OSUNA E,et al.Support vector machines[J].IEEE Intelligent Systems and Their Applications,1998,13(4):18-28. [9]KUMAR S,TIWARI S,SINGH S K.Face recognition for cattle[C]//2015 Third International Conference on Image Information Processing(ICIIP).IEEE,2015:65-72. [10]KUMAR S,SINGH S K,DUTTA T,et al.A fast cattle recognition system using smart devices[C]//Proceedings of the 24th ACM International Conference on Multimedia.2016:742-743. [11]CHEN J J,LIU C X,GAO Y F,et al.Cow recognition algorithm based on improved bag of feature model[J].Journal of Computer Applications,2016,36(8):2346-2351. [12]CAI C,LI J.Cattle face recognition using local binary pattern descriptor[C]//2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.IEEE,2013:1-4. [13]YAO L Y,XIONG H,ZHONG Y J,et al.Comparision of cow face detection algorithms based on deep network model[J].Journal of Jiangsu University(Natural Science Edition),2019,40(2):197-202. [14]CHEN X L,YANG T L,MAI K Z,et al.Holstein cattle face re-identification unifying global and part feature deep network with attention mechanism[J].Animals,2022,12(8):1047. [15]ZHU M L,ZHAO L L,HE S J.Research and realization on cattle face recognition system model based on CNN combined with SVM and ResNet[J].Journal of Chongqing University of Technology(Natural Science),2022,36(7):155-161. [16]LIU S F,CHANG R,LI B,et al.Individual Identification of Cattle Based on RGB-D Images[J/OL].Transactions of the Chinese Society for Agricultural Machinery,1-10[2024-01-12]http://kns.cnki.net/kcms/detail/11.1964.s.20230914.1340.019.html. [17]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [18]HUANG W K,TENG F,WANG Z D,et al.Image Segmentation Based on Deep Learing:A Survey[J].Computer Science,2024,51(2):107-116. [19]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer International Publishing,2015:234-241. [20]HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1314-1324. [21]YANG S N,ZHAO J M,YANG M,et al.Cattle face recognition method based on debiased term SoftMax and compact metric loss function [J].Heilongjiang Animal Science and Veterinary Medicine,2024(4):36-42. [22]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:815-823. |
|