计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 210-220.doi: 10.11896/jsjkx.240100202
罗航宇, 王小平, 梅萌, 赵文豪, 刘思纯
LUO Hangyu, WANG Xiaoping, MEI Meng, ZHAO Wenhao, LIU Sichun
摘要: 在大规模制造业中,缺陷检测旨在发现有缺陷的零部件,如损坏、错位的和存在印刷错误的部件等。由于缺陷类型未知以及缺陷样本短缺,工业品缺陷检测面临着极大的挑战。为克服上述困难,一些方法利用来自自然图像数据集的通用视觉表示,提取广义特征来进行缺陷检测。然而,提取到的预训练特征与目标数据之间存在分布差异,直接使用该特征会导致检测性能不佳。因此,提出了一种基于对比表示学习的方法ConPatch。该方法采用对比表示学习来收集相似特征或者分离不相似特征,从而学习面向目标的特征表示。为了解决缺乏缺陷标注的问题,将数据表示之间的两种相似性度量即成对相似度和全局相似度作为伪标签。此外,采用了轻量化的内存库,仅将全部正常样本即全部无缺陷样本的特征中心存储到内存库中,从而减小了空间复杂度和内存库的尺寸。最后,将正常特征拉近至一个超球面内,而缺陷特征则分布在超球面外,以此来聚集正常特征。实验结果显示,在工业品缺陷检测数据集MVTec AD中,基于Wide-ResNet50的ConPatch模型的I-AUROC和P-AUROC分别达到99.35%和98.26%。在VisA数据集中,ConPatch模型的I-AUROC和P-AUROC分别达到95.50%和98.21%。上述结果验证了模型的有效性。
中图分类号:
[1]LUO D L,CAI Y X,YANG Z H,et al.A review of deep lear-ning methods for industrial defect detection [J].Chinese Science:Information Science,2022,52(6):1002-1039. [2]DAVLETSHINA D,MELNYCHUK V,TRAN V,et al.Unsupervised anomaly detection for X-ray images[J].arXiv:2001.10883,2019. [3]NGUYEN D T,LOU Z,KLAR M,et al.Anomaly detectionwith multiple-hypotheses predictions[C]//International Confe-rence on Machine Learning.2019:4800-4809. [4]SAKURADA M,YAIRI T.Anomaly detection using autoenco-ders with nonlinear dimensionality reduction[C]//Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis.2014:4-11. [5]PIDHORSKYI S,ALMOHSEN R,DORETTO G.Generativeprobabilistic novelty detection with adversarial autoencoders[C]//Advances in Neural Information Processing Systems.2018:6822-6833. [6]SABOKROU M,KHALOOEI M,FATHY M,et al.Adversa-rially learned one-class classifier for novelty detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3379-3388. [7]ZHANG Y,CHEN X W,CHEN M D,et al.Unsupervised industrial surface anomaly detection using contrastive learning generative adversarial networks[J].Journal of Electronic Mea-surement and Instrumentation,2023,37(10):193-201. [8]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.Deepone-class classification[C]//Proceedings of the International Conference on Machine Learning.2018:4393-4402. [9]PERERA P,PATEL V M.Learning deep features for one-class classification[J].IEEE Transactions on Image Processing,2019,28(11):5450-5463. [10]YI J,YOON S.Patch svdd:Patch-level svdd for anomaly detection and segmentation[C]//Proceedings of the Asian Conference on Computer Vision.2020:375-390. [11]ROTH K,PEMULA L,ZEPEDA J,et al.Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14318-14328. [12]COHEN N,HOSHEN Y.Sub-image anomaly detection withdeep pyramid correspondences[J].arXiv:2005.02357,2020. [13]DEFARD T,SETKOV A,LOESCH A,et al.Padim:a patch distribution modeling framework for anomaly detection and localization[C]//Proceedings of the International Conference on Pattern Recognition.2020:475-489. [14]HE S R,ZHANG S J,WANG Y X.Industrial Defect Detection Model Integrating Multi-scale Features[J].Journal of Chinese Computer Systems,2023,44(5):1029-1034. [15]HUANG P Q Z,DUAN X J,HUANG W W,et al.Asymmetric defect detection method of small sample image based on meta learning[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(1):234-240. [16]LEE S,LEE S,SONG B C.Cfa:Coupled-hypersphere-based feature adaptation for target-oriented anomaly localization[J].IEEE Access,2022,10:78446-78454. [17]WU Z,XIONG Y,YU S X,et al.Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3733-3742. [18]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//International Conference on Machine Learning.2020:597-1607. [19]CHEN X,HE K.Exploring simple siamese representation lear-ning[C]//Proceedings of the IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2021:15750-15758. [20]YE M,ZHANG X,YUEN P C,et al.Unsupervised embedding learning via invariant and spreading instance feature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:6210-6219. [21]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [22]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning.2020:1597-1601. [23]KIM S,KIM D,CHO M,et al.Embedding transfer with label relaxation for improved metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3967-3976. [24]GUO J,LU S,JIA L,et al.ReContrast:Domain-specific anomaly detection via contrastive reconstruction [J].arXiv.2306.02602,2023. [25]HYUN J,KIM S,JEON G,et al.Reconpatch:Contrastive patch representation learning for industrial anomaly detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2024:2052-2061. [26]ZHANG Z Q,ZHANG H,WU T Y,et al.Continuous dense normalized flow model for industrial image anomaly detection[J].Computer Science,2023,50(12):212-220. [27]BERGMANN P,FAUSER M,SATTLEGGER D,et al.MVTec AD-A comprehensive real-world dataset for unsupervised ano-maly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9592-9600. [28]ZOU Y,JEONG J,PEMULA L,et al.Spot-the-difference self-supervised pre-training for anomaly detection and segmentation[C]//Proceedings of the European Conference on Computer Vision.2022:392-408. [29]GUDOVSKIY D,ISHIZAKA S,KOZUKA K.Cflow-ad:Real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:98-107. [30]LIU T,LI B,DU X,et al.FAIR:Frequency-aware image restoration for industrial visual anomaly detection[J].arXiv:2309.07068,2023. [31]GUO H W,REN L P,FU J J,et al.Template-guided hierarchical feature restoration for anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:6447-6458. [32]BAE J,LEE J H,KIM S.PNI:Industrial anomaly detectionusing position and neighborhood information[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:6373-6383. |
|