计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100203-7.doi: 10.11896/jsjkx.240100203
任庆欣, 冯锋
REN Qingxin, FENG Feng
摘要: 为解决斑马优化算法易陷入局部寻优、收敛速度慢等一系列问题,提出一种多策略融合改进的斑马优化算法(MSI-ZOA)。首先,利用Tent混沌映射产生随机序列的方式初始化种群,提高初始化种群在搜索空间的分布质量,加强全局探索能力。其次,利用莱维飞行的重尾特性,产生较大步长,增加搜索空间的覆盖率,加强在斑马优化算法(ZOA)的觅食阶段的全局探索能力。接着,使用一种双曲线余弦增强因子的正余弦优化算法,将其应用在ZOA算法的抵御捕食者攻击阶段,以有效挑出局部最优解,提高收敛速度。最后,使用8个基准函数对MSI-ZOA算法、ZOA算法、秃鹰优化算法(AVOA)、人工蜂鸟算法(AHA)、大猩猩部队优化算法(GTO)、算术优化算法(AOA)和北方苍鹰优化算法(NGO)进行测试,结果表明MSI-ZOA算法相比其他6种算法在收敛速度和全局搜索能力上更具优势。
中图分类号:
[1]HOLLAND J H.Adaptation In Natural And Artificial Systems[J].SIAM Review,1975,18(3):529. [2]STORN R,PRICE K.Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11:341-359. [3]DORIGO M,MANIEZZO V.Ant system:optimization by a co-lony of cooperating agents[J].IEEE transactions on systems,man,and cybernetics,Part B.Cybernetics:A publication of the IEEE Systems,Man,and Cybernetics Society,1996(1):26. [4]STORN R,PRICE K.Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11:341-359. [5]KARABOGA D,BASTURK B.A powerful and efficient algo-rithm for numerical function optimization:artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471. [6]MAO Z F,WANG W,FANG K,et al.Research on the balance problem of human-machine collaborative assembly line based on simulated annealing algorithm[J/OL].Control and Decision,1-9.[2024-05-16].https://doi.org/10.13195/j.kzyjc.2023.1068. [7]FAN K S,YANG G Y,WU D F,et al.Improved gravitational search algorithm based on multi-strategy fusion[J].Application Research of Computers,2023,40(12):3592-3598. [8]TROJOVSKÁ E,DEHGHANI M,TROJOVSKP P.Zebra Op-timization Algorithm:A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm[J].IEEE Access,2022,10:49445-49473. [9]DARAISEH A A,SANJALAWE Y,E'MARI A S,et al.Cryp-tographic Grade Chaotic Random Number Generator Based on Tent-Map[J].Journal of Sensor and Actuator Networks,2023,12(5). [10]YU X W,WEI P,YONG L.WSN node localization algorithm of sparrow search based on elite opposition-based learning and Levy flight[J].Telecommunication Systems,2023,84(4):521-531. [11]YING Y,SU Y ,LIU F J,et al.An Automatic Pipe-Routing Algorithm Based on Improved Sine Cosine Algorithm for Complex Space[J].Journal of Aerospace Engineering,2023,36(6). [12]RUSTU A,YUSUF M Y.Multi-strategy and self-adaptive differential sine-cosine algorithm for multi-robot path planning[J].Expert Systems With Applications,2023,232. [13]VIGYA,SAURAV R,KUMAR C S,et al.A novel chaoticchimp sine cosine algorithm Part-I:For solving optimization problem[J].Chaos,Solitons and Fractals:the interdisciplinary journal of Nonlinear Science,and Nonequilibrium and Complex Phenomena,2023,173:113672. [14]ABDOLLAHZADEH B,GHAREHCHOPOGH F S,MIRJALILI S.African vultures optimization algorithm:A new nature-inspired metaheuristic algorithm for global optimization problems[J].Computers & Industrial Engineering,2021,158:107408. [15]ZHAO W,WANG L,MIRJALILI S.Artificial hummingbird algorithm:A new bio-inspired optimizer with its engineering applications[J].Computer Methods in Applied Mechanics and Engineering,2022,388:114194. [16]ABDOLLAHZADEH B,SOLEIMANIAN GHAREHCHOPOGHF,MIRJALILI S.Artificial gorilla troops optimizer:a new nature-inspired metaheuristic algorithm for global optimization problems[J].International Journal of Intelligent Systems,2021,36(10):5887-5958. [17]ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The arithmetic optimization algorithm[J].Computer methods in applied mechanics and engineering,2021,376:113609. [18]DEHGHANI M,HUBÁLOVSKÝ Š,TROJOVSKÝ P.Northern goshawk optimization:a new swarm-based algorithm for solving optimization problems[J].IEEE Access,2021,9:162059-162080. |
|