计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240100203-7.doi: 10.11896/jsjkx.240100203

• 智能计算 • 上一篇    下一篇

多策略融合改进的斑马优化算法

任庆欣, 冯锋   

  1. 宁夏大学信息工程学院 银川 750021
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 冯锋(feng_f@nxu.edu.cn)
  • 作者简介:(1820980600@qq.com)
  • 基金资助:
    宁夏重点研发计划重点项目(2022BEG02016)

Zebra Optimization Algorithm Improved by Multi-strategy Fusion

REN Qingxin, FENG Feng   

  1. School of Information Engineering,Ningxia University,Yinchuan 750021,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:REN Qingxin,born in 1999,postgra-duate.His main research interests include Internet of things technology and applications,and so on.
    FENG Feng,born in 1971,professor.His main research interests include information system engineering and application,and so on.
  • Supported by:
    Major Projects of Ningxia Key Research and Development Plan(2022BEG02016).

摘要: 为解决斑马优化算法易陷入局部寻优、收敛速度慢等一系列问题,提出一种多策略融合改进的斑马优化算法(MSI-ZOA)。首先,利用Tent混沌映射产生随机序列的方式初始化种群,提高初始化种群在搜索空间的分布质量,加强全局探索能力。其次,利用莱维飞行的重尾特性,产生较大步长,增加搜索空间的覆盖率,加强在斑马优化算法(ZOA)的觅食阶段的全局探索能力。接着,使用一种双曲线余弦增强因子的正余弦优化算法,将其应用在ZOA算法的抵御捕食者攻击阶段,以有效挑出局部最优解,提高收敛速度。最后,使用8个基准函数对MSI-ZOA算法、ZOA算法、秃鹰优化算法(AVOA)、人工蜂鸟算法(AHA)、大猩猩部队优化算法(GTO)、算术优化算法(AOA)和北方苍鹰优化算法(NGO)进行测试,结果表明MSI-ZOA算法相比其他6种算法在收敛速度和全局搜索能力上更具优势。

关键词: 斑马优化算法, Tent混沌映射, 莱维飞行, 双曲线余弦增强因子, 正余弦优化算法

Abstract: In order to solve a series of problems of zebra optimization algorithm,such as easy to fall into local optimization and slow convergence,this paper proposes a multi-strategy fusion improved zebra optimization algorithm(MSI-ZOA).Firstly,the random sequence generated by Tent chaotic map is used to initialize the population,which improves the distribution quality of the initialized population in the search space and strengthens the global exploration ability.Secondly,taking advantage of the heavy-tailed property of Levi's flight,the search space coverage is increased,and the global exploration ability in the foraging stage of zebra optimization algorithmZOA) is strengthened.Nextly,using a sine and cosine optimization algorithm with hyperbolic cosine enhancement factor,it can effectively pick out the local optimal solution and improve the convergence speed when it is applied to the predator-resistant stage of ZOA algorithm.Finally,the MSI-ZOA algorithm,ZOA algorithm,vulture optimization algorithm(AVOA),artificial hummingbird algorithm(AHA),gorilla troop optimization algorithm(GTO),arithmetic optimization algorithm(AOA) and northern goshawk optimization algorithm(NGO) are tested on eight benchmark functions,and the results show that MSI-ZOA algorithm is superior to the other six algorithms in convergence speed and global search.

Key words: Zebra optimization algorithm, Tent chaotic mapping, Levi flight, Hyperbolic cosine enhancement factor, Sine cosine optimization algorithm

中图分类号: 

  • TP301.6
[1]HOLLAND J H.Adaptation In Natural And Artificial Systems[J].SIAM Review,1975,18(3):529.
[2]STORN R,PRICE K.Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11:341-359.
[3]DORIGO M,MANIEZZO V.Ant system:optimization by a co-lony of cooperating agents[J].IEEE transactions on systems,man,and cybernetics,Part B.Cybernetics:A publication of the IEEE Systems,Man,and Cybernetics Society,1996(1):26.
[4]STORN R,PRICE K.Differential Evolution-A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J].Journal of Global Optimization,1997,11:341-359.
[5]KARABOGA D,BASTURK B.A powerful and efficient algo-rithm for numerical function optimization:artificial bee colony(ABC) algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
[6]MAO Z F,WANG W,FANG K,et al.Research on the balance problem of human-machine collaborative assembly line based on simulated annealing algorithm[J/OL].Control and Decision,1-9.[2024-05-16].https://doi.org/10.13195/j.kzyjc.2023.1068.
[7]FAN K S,YANG G Y,WU D F,et al.Improved gravitational search algorithm based on multi-strategy fusion[J].Application Research of Computers,2023,40(12):3592-3598.
[8]TROJOVSKÁ E,DEHGHANI M,TROJOVSKP P.Zebra Op-timization Algorithm:A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm[J].IEEE Access,2022,10:49445-49473.
[9]DARAISEH A A,SANJALAWE Y,E'MARI A S,et al.Cryp-tographic Grade Chaotic Random Number Generator Based on Tent-Map[J].Journal of Sensor and Actuator Networks,2023,12(5).
[10]YU X W,WEI P,YONG L.WSN node localization algorithm of sparrow search based on elite opposition-based learning and Levy flight[J].Telecommunication Systems,2023,84(4):521-531.
[11]YING Y,SU Y ,LIU F J,et al.An Automatic Pipe-Routing Algorithm Based on Improved Sine Cosine Algorithm for Complex Space[J].Journal of Aerospace Engineering,2023,36(6).
[12]RUSTU A,YUSUF M Y.Multi-strategy and self-adaptive differential sine-cosine algorithm for multi-robot path planning[J].Expert Systems With Applications,2023,232.
[13]VIGYA,SAURAV R,KUMAR C S,et al.A novel chaoticchimp sine cosine algorithm Part-I:For solving optimization problem[J].Chaos,Solitons and Fractals:the interdisciplinary journal of Nonlinear Science,and Nonequilibrium and Complex Phenomena,2023,173:113672.
[14]ABDOLLAHZADEH B,GHAREHCHOPOGH F S,MIRJALILI S.African vultures optimization algorithm:A new nature-inspired metaheuristic algorithm for global optimization problems[J].Computers & Industrial Engineering,2021,158:107408.
[15]ZHAO W,WANG L,MIRJALILI S.Artificial hummingbird algorithm:A new bio-inspired optimizer with its engineering applications[J].Computer Methods in Applied Mechanics and Engineering,2022,388:114194.
[16]ABDOLLAHZADEH B,SOLEIMANIAN GHAREHCHOPOGHF,MIRJALILI S.Artificial gorilla troops optimizer:a new nature-inspired metaheuristic algorithm for global optimization problems[J].International Journal of Intelligent Systems,2021,36(10):5887-5958.
[17]ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The arithmetic optimization algorithm[J].Computer methods in applied mechanics and engineering,2021,376:113609.
[18]DEHGHANI M,HUBÁLOVSKÝ Š,TROJOVSKÝ P.Northern goshawk optimization:a new swarm-based algorithm for solving optimization problems[J].IEEE Access,2021,9:162059-162080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!