计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200041-7.doi: 10.11896/jsjkx.240200041
郭瑞强1,2,3, 贾晓文1, 杨世龙1, 魏谦强1
GUO Ruiqiang1,2,3, JIA Xiaowen1, YANG Shilong1, WEI Qianqiang1
摘要: 医学命名实体的识别和规范化是构建高质量医学知识图谱的基础。文中提出了一种基于文本特征增强的多任务学习模型,旨在解决现有模型中医学实体识别与规范化模型不能充分利用文本特征的问题。该模型添加词级、字符级特征和上下文语义信息来增强文本表示,再通过4个分级子任务,联合建模完成医学实体识别和规范化任务。实验表明,该模型能够学习实体识别和实体规范化这两个任务的共同特征,有效地提高学习的准确率。在NCBI和BC5CDR两个数据集上取得了较好的效果,在NER和NEN任务上的F1值分别为:91.09%,91.02%;92.05%,92%。
中图分类号:
[1]ZHOU B Z,CAI X R,ZHANG Y,et al.MTAAL:Multi-Task Adversarial Active Learning for Medical Named Entity Recognition and Normalization[C]//Proceedings of the 35th AAAI,California.Palo Alto,AAAI Press,2021:14586-14593. [2]LEE J,YOON W,KIM S,et al.BioBERT:a pre-trained biomedical language representation model for biomedical text mining[J].Bioinformatics,2020,36(4):1234-1240. [3]ZHAO P,DOU Q S,TANG H L,et al.Attention AdaptiveModel with Word Information Embeding for Named Entity Re-cognition[J].Computer Engineering and Applications,2023,59(8):167-174. [4]YANG R Y,HE Q,DU N S.Chinese Named Entity Recognition Based on Gated Multi-Feature Extractors[J].Computer Engineering and Applications,2022,58(8):117-124. [5]ROBERT L,REZARTA L,ZHIYONG L.Dnorm:disease name normalization with pairwise learning to ran.[J].Bioinform,2013,29(22):2909-2917. [6]LOWE D M,O'BOYLE N M,ASAYLE R.Leadmine:Diseaseidentification and concept mapping using wikipedia[C]//Proceedings of the Fifth BioCreative Challenge Evaluation Workshop.Seville,CEUR Workshop Proceedings,2015:240-246. [7]ROBERT L,ZHIYONG L.Taggerone:joint named entity recognition and normalization with semi-markov models.[J].Bioinform,2016,32(18):2839-2846. [8]SAHU S,ANAND A.Recurrent neural network models for disease name recognition using domain invariant features[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,Berlin,Stroudsburg,Association for Computational Linguistics,2016:2216-2225. [9]DEVLIN J,MINGWEI C,LEE K,TOUTANOVA K.BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics.Florence,Minneapolis,Association for Computational Linguistics,2019:4171-4186. [10]XIONG Y,HUANG Y H,CHEN Q C,et al.TANG B Z.A joint model for medical named entity recognition and normalization[C]//Proceedings of the Iberian Languages Evaluation Forum colocated with 36th Conference of the Spanish Society for Natural Language Processing.Málaga,IberLEF@SEPLN,2020:499-504. [11]ZHOU H,NING S,LIU Z,et al.Knowledge-enhanced biomedi-cal named entity recognition and normalization:application to proteins and genes.[J].Bioinform,2020,21(1):35-50. [12]LOU Y X,ZHANG Y,QIAN T,et al.A transition-based joint model for disease named entity recognition and normalization.[J].Bioinform,2017,33(15):2363-2371. [13]EMMA S,PATRICK V,DAVID B,ANDREW M.Fast and accurate entity recognition with iterated dilated convolutions[C]//Proceedings of the 25th Conference on Empirical Methods in Natural Language Processing.Copenhagen,Copenhagen,Asso-ciation for Computational Linguistics,2017:2670-2680. [14]ZHAO Z H,YANG Z H,LUO L,et al.Disease named entity recognition from biomedical literature using a novel convolu-tional neural network.[J].BMC Medical Genomics,2017,10(5):73-82. [15]WONJIN Y,CHAN H S,JINHYUK L,et al.Collabonet:colla-boration of deep neural networks for biomedical named entity re-cognition[J].BMC Bioinform,2019,20(10):55-65. [16]ZHANG S D,LIU T,ZHAO S C,et al.A neural multi-task learning framework to jointly model medical named entity recognition and normalization[C]//Proceedings of the 33th AAAI.Hawaii,Honolulu,AAAI Press,2019:817-824. [17]ZHOU B H,CAI X R,ZHANG Y,et al.An End-to-End Progressive Multi-Task Learning Framework for Medical Named Entity Recognition and Normalization[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing,Online,Aug 1-8,Florence.Association for Computational Linguistics,2021:6214-6224. [18]CHEN M X,CHEN Y P,HU Y,et al.Biomedical Named Entity Recognition Method Based on Word Meaning Enhancement[J].Computer Engineering,2023,49(10):305-312. [19]YU X Q,WANG X,LI Z Q,et al.Biomedical Named Entity Re-cognition Based on Character Level Feature Adaptation[J].Journal of Chinese Computer Systems,2023,44(9):1876-1883. [20]ZHOU B,CAI X,ZHANG Y,et al.MTAAL:multi-task adversarial active learning for medical named entity recognition and normalization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14586-14593. [21]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics,Berlin,Aug 7-12,Stroudsburg.Association for Computational Linguistics,2016:207-212. [22]REZARTA I D,ROBERT L,LU Z Y.NCBI disease corpus:A resource for disease name recognition and concept normalization.[J].Journal of Biomedical Informatics,2014,47(1):1-10. [23]JIAO L,SUN Y P,ROBIN J J,et al.Biocreative V CDR task corpus:a resource for chemical disease relation extraction.[J].Database(Oxford),2016,2016(2016):68-78. [24]DIEDERIK P.KINGMA,JIMMY L B.Adam:A method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations,San Diego,May 7-9,Ithaca.Conference Track Proceedings,2015:602-616. |
|