计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 357-365.doi: 10.11896/jsjkx.240200067

• 信息安全 • 上一篇    下一篇

基于位置服务的多因素假位置选择算法

李勇军1,2, 祝跃飞1, 吴魏1, 白利芳1,3   

  1. 1 信息工程大学网络空间安全学院 郑州 450007
    2 中原工学院软件学院 郑州 450000
    3 中国软件评测中心网络安全测评工程技术中心 北京 100048
  • 收稿日期:2024-02-20 修回日期:2024-06-28 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 祝跃飞(yfzhu17@sina.com)
  • 作者简介:(106449285@qq.com)
  • 基金资助:
    科技委基础加强项目(2020-JCJQ-ZD-021);国家自然科学基金青年基金项目(62102447)

Multi-factor Dummy Location Selection Algorithm in Location-based Service

LI Yongjun1,2, ZHU Yuefei1, WU Wei1, BAI Lifang1,3   

  1. 1 School of Cyberspace Security,PLA Information Engineering University,Zhengzhou 450007,China
    2 School of Software,Zhongyuan University of Technology,Zhengzhou 450000,China
    3 Cybersecurity Testing Engineering Technology Center,China Software Testing Center,Beijing 100048,China
  • Received:2024-02-20 Revised:2024-06-28 Online:2025-05-15 Published:2025-05-12
  • About author:LI Yongjun,born in 1983,Ph.D.Her main research interest is privacy protection.
    ZHU Yuefei,born in 1962,professor,Ph.D supervisor.His main research interests include network security and cryptography.
  • Supported by:
    Foundation Strengthening Project of Science and Technology Commission(2020-JCJQ-ZD-021) and National Natural Science Foundation of China(62102447).

摘要: 针对现有假位置在进行基于位置服务的快照位置隐私保护时,忽略位置本身时间因素引发的背景知识攻击,以及对敏感位置同等对待等问题,提出一种多因素的假位置选取算法(Multi-Factor Dummy Location Selection Algorithm,MFDLS)。该算法综合考虑了影响隐私泄露的因素,包括位置的地理属性、语义属性、时间属性,以及查询概率等背景知识和用户敏感偏好,确保所选假位置不仅能有效抵御位置同质攻击、位置语义攻击和查询概率分布攻击,还能应对位置分布攻击、敏感同质攻击和链接攻击等多种威胁。算法选取满足与当前请求时间段内查询概率接近,语义多样化、匿名空间大且时间相对一致,非离群点和中心点要求的假位置。安全性分析和仿真实验结果表明:与已有的假位置选取算法相比,所提算法在敌手错误方面提升16%以上,质量损失方面降低30%以上,能更有效地抵御背景知识攻击,满足用户隐私需求。

关键词: 假位置选择, 多因素, 地理位置, 查询概率, 位置语义, 位置时间属性, 敏感语义

Abstract: In view of the existing dummy location selection methods in LBS snapshot location privacy protection,the background knowledge attack caused by the time factor of the location itself is ignored,and the sensitive locations are treated equally.Based on this,a multi-factor dummy location selection algorithm(MFDLS) is proposed,which comprehensively considers the factors that affect privacy leakage,including background knowledge such as geographical attributes,semantic attributes,time attributes of the location and query probability as well as the users' sensitive preferences.To ensure that the selected dummy locations can not only effectively resist location homogeneity attack,location semantic attack and query probability distribution attack,but also deal with multiple threats such as location distribution attack,sensitive homogeneity attack and link attack.The algorithm selects the dummy locations that meet the requirements of query probability close to the initiating time,semantic diversification,large anonymous space and relatively consistent time,non-outlier and central point.Compared with the existing dummy location selection algorithm,the security analysis and simulation results show that the proposed algorithm improves the adversary error by at least 16% and reduces the quality loss by at least 30%,which can more effectively resist the background knowledge attack and meet the users' privacy requirements.

Key words: Dummy location selection, Multi-factor, Geographical location, Query probability, Location semantic, Location time attribute, Sensitive semantic

中图分类号: 

  • TP309
[1]LIAN H,QIU W,YAN D,et al.Privacy-Preserving SpatialQuery Protocol Based on the Moore Curve for Location-Based Service [J].Computers & Security,2020,96(3):101-125.
[2]ZENG S,MU Y,HE M,et al.New approach for privacy-aware location-based service communications [J].Wireless Personal Communications,2018,101:1057-1073.
[3]ZHANG L,SONG G,ZHU D,et al.Location privacy preservation through kernel transformation [J].Concurrency and Computation:Practice and Experience,2022,34(16):e6014.
[4]ZHANGX J,YANG H Y,LI Z,et al.Differentially Private Location Privacy-preserving Scheme with Semantic Location [J].Computer Science,2021,48(8):300-308.
[5]LIU Z P,MIAO D W,LIU Q N,et al.Location privacy protection through local differential privacy under k-anonymity [J].Application Research of Computers,2022,39(8):2469-2473.
[6]JIAO Z X,ZHANG L,LIU Q P.Fine-grained spurious location selection algorithm for distinguishing time periods [J].Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition,2022,42(6):106-114.
[7]ZHANG X J,YANG Y X,LI J L,et al.A false location generating algorithm against background information inference attacks [J].Computer Science,2023,50(S2):879-887.
[8]WANG S,LI F H,NIU B,et al.Research Progress on Location-preserving Technique [J].Journal of Communication,2016,37(12):124-141.
[9]WU L,PAN X,PIAO C H,et al.Based on personalized privacy protection against sensitive homogeneity attacks in location services [J].Computer applications,2014,34(8):2356-2360.
[10]KIDO H,YANAGISAWA Y,SATOH T.An anonymous communication technique using dummies for location-based services[C]//ICPS'05.IEEE,2005:88-97.
[11]LU H,JENSEN C S,YIU M L.PAD:privacy-area aware,dummy-based location privacy in mobile services[C]//ACM International Workshop on Data Engineering for Wireless & Mobile Access.ACM,2008:16-23.
[12]NIU B,LI Q,ZHU X,et al.Achieving k-anonymity in privacy-aware location-based services [C]//IEEE INFOCOM 2014-IEEE Conference on Computer Communications.NJ:IEEE,2014:754-762.
[13]ZHANG A,LI X H,LI B.Location privacy desensitization algorithm based on false location selection [J].Application Research of Computers,2022,39(5):1551-1556.
[14]ZHANG Y B,ZHANG Q Y,LI Z Y,et al.Pseudo-location K-anonymous location privacy protection method based on approximate matching [J].Control and Decision,2019,35(1):65-73.
[15]WANG H,ZHU G Y,SHEN Z H,et al.False location generation method based on user preference and location distribution [J].Computer Science,2021,48(7):164-171.
[16]SONG C,ZHANG Y D,PENG W P,et al.Research on K-anonymous privacy protection Scheme based on Bilinear pairs [J].Applied Research of Computers,2019,36(5):1529-1532.
[17]HARA T.Dummy-based location anonymization for controlling observable user preferences[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-7.
[18]WANG J,WANG C,MA J F,et al.Pseudoposition selection algorithm based on position semantics and query probabilities.[J].Journal of Communications,2020,41(3):53-61.
[19]TU S P,ZHANG L,LIU X P.Double false location selection algorithm based on Behavior Association [J].Computer Science,2023,50(5):348-354.
[20]XIA X Y,BAI Z H,LI J,et al.Location anonymity algorithm based on false position and Stackelberg game [J].Journal of Computer Science,2019,42(10):2216-2232.
[21]LI C,ZHANG X,YAN F,et al.False position generationScheme based on User Preference [J].Computer Engineering and Design,2019,40(4):914-919,1195.
[22]CHOWC Y,MOKBEL M F.Enabling private continuous queries for revealed user locations[C]//International Symposium on Spatial and Temporal Databases.Springer,2007:258-275.
[23]XIAO P,ZHEN X.Survey of location privacy-preserving [J].Journal of Computer Science and Frontiers,2007,1(3):268-281.
[24]MACHANAVAJJHALA A,KIFER D,GEHRKE J,et al.L-diversity:Privacy Beyond k-anonymity [J].ACM Transaction on Knowledge Discovery from data,2007,1(1):3-5.
[25]WANG S,LI F H,NIU B,et al.Research Progress on Location-preserving Technique [J].Journal of Communication,2016,37(12):124-141.
[26]ZHENG Y,XIE X,MA W Y.GeoLife:A Collaborative SocialNetworking Service among User,location and trajectory [J].IEEE Data Engineering Bulletin,2021,33(2):32-40.
[27]TAKAGI S,CAO Y,ASANO Y,et al.Geo-graph-indistinguishability:Protecting location privacy for LBS over road networks[C]//33rd Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy(DBSec).Springer,2019:143-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!