计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200108-6.doi: 10.11896/jsjkx.240200108

• 交叉&应用 • 上一篇    下一篇

基于分布式固定时间时变算法的微电网能源调度研究

杨帅1, 代祥光2, 徐淑莹3, 张亮亮1   

  1. 1 国能包头能源有限责任公司 内蒙古 鄂尔多斯 017000
    2 重庆三峡学院智能信息处理与控制重庆高校市级重点实验室 重庆 404100
    3 西南大学电子与信息工程学院 重庆 400700
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 代祥光(daixiangguang@163.com)
  • 作者简介:(suyeeism@163.com)
  • 基金资助:
    重庆市教委科学技术研究项目(KJZD-M202201204,KJZD-K202201205);重庆市自然科学基金项目(CSTB2023NSCQ-LZX0135);重庆万州区科学技术局科技创新智慧农业项目(2022-17)

Research on Microgrid Energy Dispatch Based on Distributed Fixed-timeTime-varyingAlgorithm

YANG Shuai1, DAI Xiangguang2, XU Shuying3, ZHANG Liangliang1   

  1. 1 National Energy Baotou Energy Limited Liability Company,Ordos,Inner Mongolia 017000,China
    2 Key Laboratory of Intelligent Information Processing and Control,Chongqing Three Gorges University,Chongqing 404100,China
    3 College of Electronic and Information Engineering,Southwest University,Chongqing 400700,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:YANG Shuai,born in 1989,assistant engineer.His main research interest is the automation of coal mine power supply systems.
    DAI Xiangguang,born in 1986,Ph.D,associate professor.His main research interests include optimization algorithms,neural networks,clustering and pattern recognition.
  • Supported by:
    Science and Technology Research Project of Chongqing Municipal Education Commission(KJZD-M202201204,KJZD-K202201205),Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0135) and Science and Technology Innovation Smart Agriculture Project of Science and Technology Department, Wanzhou District of Chongqing(2022-17).

摘要: 微电网中的能源优化调度旨在通过制定最低发电成本的目标,找到最优的设备发电策略。首先建立了一个基于多智能体的微电网模型,充分考虑了微电网运行总负荷随时间变化的动态性。为了解决考虑时变负荷的发电成本最小化问题,进一步设计了一种分布式固定时间时变算法。优化问题的目标函数被定义为所有局部凸目标函数的总和,并受等式约束的限制。在理论上,通过构造李雅普诺夫函数,证明了该算法的稳定性和收敛性。这一理论基础为算法在实际应用中的可靠性提供了保障。数值仿真实验结果显示,所提出的算法能够成功解决微电网能源优化调度问题。这不仅为微电网管理提供了有效工具,也为能源系统的可持续发展提供了有力支持。通过最小化发电成本,微电网能够更高效地满足不断变化的负荷需求,从而提高系统的经济性和可持续性。这项研究为微电网的智能化管理和未来能源系统的设计提供了有益的参考。

关键词: 微电网, 能源优化调度, 最低发电成本, 时变负荷, 分布式固定时间时变算法

Abstract: Energy optimization dispatch within microgrid aims to minimize generation costs by formulating the objective of achieving the optimal device generation strategy.This paper establishes a microgrid model based on multiple intelligent agents,fully considering the dynamic nature of the total load in the microgrid as it varies over time.To address the minimization of generation costs while accounting for time-varying loads,a distributed fixed-time time-varying algorithm is further designed.The objective function of the optimization problem is defined as the summation of all local convex objective functions,subject to constraints imposed by equations.The theoretical foundation of this study involves proving the stability and convergence of the algorithm through the construction of a Lyapunov function.This theoretical underpinning ensures the reliability of the algorithm in practical applications.Numerical simulation experiments demonstrate that the proposed algorithm effectively resolves the energy optimization dispatch problem within microgrid.This not only furnishes a potent tool for microgrid management,but also lends robust support to the sustainable development of energy systems.By minimizing generation costs,microgrid can efficiently meet the constantly evolving demands of loads,thereby enhancing the economic efficiency and sustainability of the system.The research provides valuable insights for the intelligent management of microgrids and the design of future energy systems.

Key words: Microgrid, Energy optimization dispatch, Minimizing generation costs, Time-varying loads, Distributed fixed-time time-varying algorithm

中图分类号: 

  • TM734
[1]ZHU J Z,DONG H J,LI S L,et al.Review of Optimal Dispatching for the Aggregation of Micro-Energy Grids Based on Distributed New Energy[C]//Proceedings of the CSE.2024.
[2]SUN C F,ZHOU H Y,ZHANG Y H.Dynamic Environment Economic Dispatch Based on Differential Evolution Algorithm[J].Computer Science,2012,39(11):208-211,253.
[3]SAMENDE C,BHAGAVATHY S M,MCCULLOCH M.Power Loss Minimization of Off-Grid Solar DC Nano-Grids—Part I:Centralized Control Algorithm[J].IEEE Transactions on Smart Grid,2021,12(6):4715-4725.
[4]ZAMAN M F,ELSAYED S M,RAY T,et al.Evolutionary Algorithms for Dynamic Economic Dispatch Problems[J].IEEE Transactions on Power Systems,2016,31(2):1486-1495.
[5]BINETTI G,ABOUHEAF M,LEWIS F,et al.TURCHIANOB,Distributed solution for the economic dispatch problem[C]// 21st Mediterranean Conference on Control and Automation.Platanias,Greece,2013:243-250.
[6]XING H,MOU Y,FU M,et al.Distributed Bisection Methodfor Economic Power Dispatch in Smart Grid[J].IEEE Transactions on Power Systems,2015,30(6):3024-3035.
[7]XU Y,ZHANG W,LIU W.Distributed Dynamic Programming-Based Approach for Economic Dispatch in Smart Grids[J].IEEE Transactions on Industrial Informatics,2015,11(1):166-175.
[8]ZHANG Z,CHOW M Y.Convergence Analysis of the Incre-mental Cost Consensus Algorithm Under Different Communication Network Topologies in a Smart Grid[J].IEEE Transactions on Power Systems,2012,27(4):1761-1768.
[9]DAI H,JIA J,YAN L,et al.Distributed Fixed-Time Optimization in Economic Dispatch Over Directed Networks[J].IEEE Transactions on Industrial Informatics,2021,17(5):3011-3019.
[10]LI C,YU X,HUANG T,et al.Distributed Optimal Consensus Over Resource Allocation Network and Its Application to Dynamical Economic Dispatch[J].IEEE Transactions on Neural Networks and Learning Systems,2018,29(6):2407-2418.
[11]YI P,HONG Y,LIU F.Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems[J].Automa-tica,2016,74:256-269.
[12]WANG B,SUN S,REN W.Distributed continuous-time algo-rithms for optimal resource allocation with time-varying quadratic cost functions[J].IEEE Transactions on Control of Network Systems,2020,7(4):1974-1984.
[13]LI J Y,GU C Y,WU Z Y,et al.Online learning algorithm for distributed convex optimization with time-varying coupled constraints and bandit feedback[J].IEEE Transactions on Cybernetics,2022,52(2):1009-1020.
[14]FAZLYAB M,PATERNAIN S,PRECIADO V M,et al.Prediction-correction interior-point method for time-varying convex optimization[J].IEEE Transactions on Automatic Control,2018,63(7):1973-1986.
[15]SUN C,FENG Z,HU G Q.Time-varying optimization-based approach for distributed formation of uncertain Euler-Lagrange systems[J].IEEE Transactions on Cybernetics,2022,52(7):5984-5998.
[16]SPANGLER R,SHOULTS R.Power generation,operation,and control[book review][J].IEEE Power and Energy Magazine,2014,12(4):90-93.
[17]WOOD A J,WOLLENBERG B F,SHEBLE G B.Power generation,operation,and control[M].John Wiley & Sons,2013.
[18]ZUO Z,HAN Q L,NING B.Fixed-time cooperative control of multi-agent systems[M].Cham,Switzerland:Springer International Publishing,2019.
[19]ZUO Z Y,TIE L.A new class of finite-time nonlinear consensus protocols for multi-agent systems[J].International Journal of Control,2014,87(2):363-370.
[20]NGUYEN L T,YU X H,EBERHARD A,et al.Fixed-time gradient dynamics with time-varying coefficients for continuous-time optimization[J].IEEE Transactions on Automatic Control,2022.68(7):4383-4390.
[21]WANG B,FEI Q,WU Q.Distributed Time-Varying ResourceAllocation Optimization Based on Finite-Time Consensus Approach[J].IEEE Control Systems Letters,2021,5(2):599-604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!