计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 211-218.doi: 10.11896/jsjkx.240300060

• 计算机图形学&多媒体 • 上一篇    下一篇

基于先验驱动的体素内不相干运动的参数估计

胡国栋, 叶晨   

  1. 贵州省先进医学成像与智能计算全省重点实验室(贵州大学) 贵阳 550025
    文本计算与认知智能教育部工程研究中心(贵州大学) 贵阳 550025
    公共大数据国家重点实验室(贵州大学) 贵阳 550025
    贵州大学计算机科学与技术学院 贵阳 550025
  • 收稿日期:2024-03-11 修回日期:2024-07-12 出版日期:2025-06-15 发布日期:2025-06-11
  • 通讯作者: 叶晨(yechenfish@163.com)
  • 作者简介:(939906833@qq.com)
  • 基金资助:
    贵州省基础研究(自然科学)项目(黔科合基础-ZK[2023]一般058);贵州大学博士基金(贵大人基合字(2021)17);国家自然科学基金(62161004);贵州省自然科学基金(黔科合基础[2020]1Y255);贵州省科学技术基金重点项目(黔科合基础-ZK[2021]重点002);贵州省科学项目(黔科合基础-ZK[2022]一般046)

Parameter Estimation of Intravoxel Incoherent Motion Based on Prior-driven

HU Guodong, YE Chen   

  1. Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province(Guizhou University),Guiyang 550025,China
    Engineering Research Center of Text Computing & Cognitive Intelligence,Ministry of Education(Guizhou University),Guiyang 550025,China
    State Key Laboratory of Public Big Data(Guizhou University),Guiyang 550025,China
    College of Computer Science and Technology,Guizhou University,Guiyang 550025,China
  • Received:2024-03-11 Revised:2024-07-12 Online:2025-06-15 Published:2025-06-11
  • About author:HU Guodong,born in 1997,postgra-duate.His main research interests include machine learning and medical image analysis.
    YE Chen,born in 1985,Ph.D,associate professor.His main research interests include machine learning and medical image analysis.
  • Supported by:
    Guizhou Provincial Basic Research Program(Natural Science)(QianKeHe ZK [2023] 058),Doctor Foundation of Guizhou University(GuiDaRenJiHeZi(2021)17),National Natural Science Foundation of China(62161004),Natural Science Foundation of Guizhou Province(QianKeHe[2020]1Y255), Guizhou Provincial Science and Technology Projects(QianKeHe ZK[2021] Key 002) and Guizhou Provincial Science and Technology Projects(QianKeHe ZK[2022] 046).

摘要: 体素内不相干运动(Intravoxel Incoherent Motion,IVIM) 模型利用扩散加权磁共振成像的原理(Diffusion-weighted Magnetic Resonance Imaging,DWI),能够无损获得生物活体组织的水分子扩散系数(D)和血液灌注信息(F,D*)。但是传统的IVIM参数估计方法对噪音敏感,特别是在肝脏等受呼吸运动影响的腹部器官,因此参数估计效果不佳。为了提高参数估计模型的噪音鲁棒性,提出一个先验驱动的神经网络(Prior-Driven Neural Network,PDNN),利用全监督训练自适应学习到的先验知识去指导无监督训练。使用均方误差根(Root Mean Square Errors,RMSE)在不同信噪比上评估模型的噪音鲁棒性,采用变异系数(Coefficient of Variation,CV)分布来区分肝脏健康组和肝硬化组之间的显著性差异,并与非线性最小二乘、基于体素的深度学习方法IVIM-NEToptim和基于领域信息的2D卷积网络SSUN比较。结果表明,所提出的方法具有最好的噪音鲁棒性,拟合参数[D,F,D*]在所有信噪比上的RMSE指标比次优方法分别低27.63%,23.72%,31.46%。此外,所提方法能更好地保存组织结构信息,有效区分了健康肝脏和肝硬化(CV分布具有显著性差异,P<0.05)。

关键词: 体素内不相干运动成像, 参数估计, 肝硬化, 深度学习

Abstract: Intravoxel incoherent motion(IVIM) model leverages diffusion-weighted magnetic resonance imaging(DWI) to non-invasively ascertain the diffusion coefficient of water molecules in living tissue(D) and to gather blood perfusion data(F,D*).However,conventional methods for estimating IVIM parameters are particularly susceptible to noise,which poses a significant challenge in abdominal organs like the liver where respiratory motion is prevalent.This sensitivity often compromises the efficacy of parameter estimation.To enhance the robustness against noise,this study introduces a novel algorithm,the prior-driven neural network(PDNN).This approach harnesses prior knowledge derived from fully supervised training to inform and guide unsupervised learning phases.The robustness of PDNN model to noise is systematically assessed using root mean square errors(RMSE) across various signal-to-noise ratios.Additionally,the coefficient of variation(CV) distribution is employed to effectively differentiate between healthy and cirrhotic liver tissues,indicating significant variations(P<0.05) that underscore the model's diagnostic capability.The performance of the PDNN algorithm is compared with other advanced methods,including the nonlinear least squares approach,the voxel-based deep learning method IVIM-NEToptim,and SSUN,a 2D convolutional network grounded in domain-specific information.The results demonstrate that PDNN outperforms these methods in terms of noise robustness.Speci-fically,the RMSE values for the fitting parameters [D,F,D*] in the proposed model are 27.63%,23.72%,and 31.46% lower,respectively,than those recorded by the sub-optimal method.Moreover,PDNN not only preserves the integrity of tissue structure information but also effectively distinguishes between healthy and cirrhotic livers,highlighting its potential as a superior tool for clinical diagnosis and evaluation.

Key words: Intravoxel incoherent motion imaging, Parameter estimation, Cirrhosis, Deep learning

中图分类号: 

  • TP391
[1]LE BIHAN D,BRETON E,LALLEMAND D,et al.MR ima-ging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders[J].Radiology,1986,161(2):401-407.
[2]LE BIHAN D.Separation of diffusion and perfusion in intra-voxel incoherent motion MR imaging[J].Radiology,1988:168.
[3]LE BIHAN D.What can we see with IVIM MRI? [J].NeuroImage,Academic Press Inc,2019,187:56-67.
[4]PHONLAKRAI M,RAMADAN S,SIMPSON J,et al.Non-contrast based approach for liver function quantification using Bayesian-based intravoxel incoherent motion diffusion weighted imaging:A pilot study[J].Journal of Applied Clinical Medical Physics,John Wiley and Sons Ltd,2023,24(11):e14178.
[5]LUCIANI A,VIGNAUD A,CAVET M,et al.Liver cirrhosis:intravoxel incoherent motion MR imaging-pilot study.[J].Ra-diology,2008,249(3):891.
[6]PATEL J,SIGMUND E E,RUSINEK H,et al.Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination:Preliminary experience[J].Journal of Magnetic Resonance Imaging,2010,31(3):589-600.
[7]BAGHERI M,GHORBANI F,AKBARI-LALIMI H,et al.Histopathological graded liver lesions:what role does the IVIM analysis method have?[J].Magnetic Resonance Materials in Physics,Biology and Medicine,Springer Science and Business Media Deutschland GmbH,2023,36(4):565-575.
[8]LI Y T,CERCUEIL J P,YUAN J,et al.Liver intravoxel incoherent motion(IVIM) magnetic resonance imaging:A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation[J].Quantitative Imaging in Medicine and Surgery,2017,7(1):59-78.
[9]PARK H J,SUNG Y S,LEE S S,et al.Intravoxel incoherent motion diffusion-weighted MRI of the abdomen:the effect of fitting algorithms on the accuracy and reliability of the parameters[J].Journal of Magnetic Resonance Imaging,2017,45(6):1637-1647.
[10]COHEN A D,SCHIEKE M C,HOHENWALTER M D,et al.The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver[J].Magnetic Resonance in Medicine,2015,73(1):306-311.
[11]CHO G Y,MOY L,ZHANG J L,et al.Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer[J].Magnetic resonance in medicine,2015,74(4):1077-1085.
[12]MEEUS E M,NOVAK J,WITHEY S B,et al.Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue[J].Journal of Magnetic Resonance Imaging,2017,45(5):1325-1334.
[13]MERISAARI H,MOVAHEDI P,PEREZ I M,et al.Fittingmethods for intravoxel incoherent motion imaging of prostate cancer on region of interest level:Repeatability and gleason score prediction[J].Magnetic Resonance in Medicine,2017,77(3):1249.
[14]FUSCO R,SANSON M,PETRILLO A.A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2017,30(2):113.
[15]GUSTAFSSON O,MONTELIUS M,STARCK G,et al.Impact of Prior Distribution and Central Tendency Measure on Bayesian IVIM Model Fitting[J].Magnetic Resonance in Medicine,2018,79(3):1674.
[16]ORTON M R,COLLINS D J,KOH D M,et al.Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling[J].Magnetic Resonance in Medicine,2013,71(1):411-420.
[17]WHILE P T.A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI[J].Magnetic Resonance in Medicine,2017,78(6):2373-2387.
[18]YE C,XU D,QIN Y,et al.Accurate intravoxel incoherent motion parameter estimation using Bayesian fitting and reduced number of low b-values[J].Medical Physics,2020,47(9):4372-4385.
[19]BERTLEFF M,DOMSCH S,WEINGÄRTNER S,et al.Diffusion parameter mapping with the combined intravoxel inco-herent motion and kurtosis model using artificial neural networks at 3T[J].NMR in Biomedicine,2017,30(12):e3833.
[20]BARBIERI S,GURNEY-CHAMPION O J,KLAASSEN R,et al.Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI[J].Magnetic Resonance in Medicine,2020,83(1):312-321.
[21]KAANDORP M,BARBIERI S,KLAASSEN R,et al.Improved unsupervised physics-informed deep learning for intravoxel-incoherent motion modeling and evaluation in pancreatic cancer patients[J].Magnetic Resonance in Medicine,2021,86(4):2250-2265.
[22]VASYLECHKO S D,WARFIELD S K,AFACAN O,et al.Self-supervised IVIM DWI parameter estimation with a physics based forward model[J].Magnetic Resonance in Medicine,2022,87(2):904-914.
[23]HUANG H M.An unsupervised convolutional neural network method for estimation of intravoxel incoherent motion parameters[J].Physics in Medicine & Biology,IOP Publishing,2022,67(21):215018.
[24]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015.2015:234-241.
[25]KAANDORP M P T,ZIJLSTRA F,FEDERAU C,et al.Deep learning intravoxel incoherent motion modeling:Exploring the impact of training features and learning strategies[J].Magnetic Resonance in Medicine,2023,90(1):312.
[26]MACKAY D.A practical Bayesian framework for backpropagation networks[J].Neural Computation,1992,4(3):448-472.
[27]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the national academy of sciences,National Acad Sciences,2017,114(13):3521-3526.
[28]PASCANU R,BENGIO Y.Revisiting Natural Gradient for Deep Networks[C]//ICLR 2014.2014:1655-1658.
[29]WÁNG Y X J,DENG M,LI Y T,et al.A Combined Use of Intravoxel Incoherent Motion MRI Parameters Can Differentiate Early-Stage Hepatitis-b Fibrotic Livers from Healthy Livers[J].SLAS TECHNOLOGY:Translating Life Sciences Innovation,2018,23(3):259-268.
[30]CIRITSIS A,ROSSI C,WURNIG M C,et al.Intravoxel Incoherent Motion:Model-Free Determination of Tissue Type in Abdominal Organs Using Machine Learning[J].Investigative Radiology,2017,52(12):747-757.
[31]WURNIG M C,DONATI O F,ULBRICH E,et al.Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects:Proposal of a standardized algorithm[J].Magnetic Resonance in Medicine,2015,74(5):1414-1422.
[32]GAMBAROTA G,HITTI E,LEPORQ B,et al.Eliminating the blood-flow confounding effect in intravoxel incoherent motion(IVIM) using the non-negative least square analysis in liver[J].Magnetic Resonance in Medicine,2017,77(1):310-317.
[33]LEE W,KIM B,PARK H W.Quantification of intravoxel incoherent motion with optimized b-values using deep neural network[J].Magnetic Resonance in Medicine,2021,86(1):230-244.
[34]LEMKE A,STIELTJES B,SCHAD L R,et al.Toward an optimal distribution of b values for intravoxel incoherent motion ima-ging[J].Magnetic Resonance Imaging:An International Journal of Basic Research and Clinical Applications,2011,29(6):766-776.
[35]JALNEFJORD O,ANDERSSON M,MONTELIUS M,et al.Comparison of methods for estimation of the intravoxel incoherent motion(IVIM) diffusion coefficient(D) and perfusion fraction(f)[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2018,31(6):715-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!