计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 211-218.doi: 10.11896/jsjkx.240300060
胡国栋, 叶晨
HU Guodong, YE Chen
摘要: 体素内不相干运动(Intravoxel Incoherent Motion,IVIM) 模型利用扩散加权磁共振成像的原理(Diffusion-weighted Magnetic Resonance Imaging,DWI),能够无损获得生物活体组织的水分子扩散系数(D)和血液灌注信息(F,D*)。但是传统的IVIM参数估计方法对噪音敏感,特别是在肝脏等受呼吸运动影响的腹部器官,因此参数估计效果不佳。为了提高参数估计模型的噪音鲁棒性,提出一个先验驱动的神经网络(Prior-Driven Neural Network,PDNN),利用全监督训练自适应学习到的先验知识去指导无监督训练。使用均方误差根(Root Mean Square Errors,RMSE)在不同信噪比上评估模型的噪音鲁棒性,采用变异系数(Coefficient of Variation,CV)分布来区分肝脏健康组和肝硬化组之间的显著性差异,并与非线性最小二乘、基于体素的深度学习方法IVIM-NEToptim和基于领域信息的2D卷积网络SSUN比较。结果表明,所提出的方法具有最好的噪音鲁棒性,拟合参数[D,F,D*]在所有信噪比上的RMSE指标比次优方法分别低27.63%,23.72%,31.46%。此外,所提方法能更好地保存组织结构信息,有效区分了健康肝脏和肝硬化(CV分布具有显著性差异,P<0.05)。
中图分类号:
[1]LE BIHAN D,BRETON E,LALLEMAND D,et al.MR ima-ging of intravoxel incoherent motions:application to diffusion and perfusion in neurologic disorders[J].Radiology,1986,161(2):401-407. [2]LE BIHAN D.Separation of diffusion and perfusion in intra-voxel incoherent motion MR imaging[J].Radiology,1988:168. [3]LE BIHAN D.What can we see with IVIM MRI? [J].NeuroImage,Academic Press Inc,2019,187:56-67. [4]PHONLAKRAI M,RAMADAN S,SIMPSON J,et al.Non-contrast based approach for liver function quantification using Bayesian-based intravoxel incoherent motion diffusion weighted imaging:A pilot study[J].Journal of Applied Clinical Medical Physics,John Wiley and Sons Ltd,2023,24(11):e14178. [5]LUCIANI A,VIGNAUD A,CAVET M,et al.Liver cirrhosis:intravoxel incoherent motion MR imaging-pilot study.[J].Ra-diology,2008,249(3):891. [6]PATEL J,SIGMUND E E,RUSINEK H,et al.Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination:Preliminary experience[J].Journal of Magnetic Resonance Imaging,2010,31(3):589-600. [7]BAGHERI M,GHORBANI F,AKBARI-LALIMI H,et al.Histopathological graded liver lesions:what role does the IVIM analysis method have?[J].Magnetic Resonance Materials in Physics,Biology and Medicine,Springer Science and Business Media Deutschland GmbH,2023,36(4):565-575. [8]LI Y T,CERCUEIL J P,YUAN J,et al.Liver intravoxel incoherent motion(IVIM) magnetic resonance imaging:A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation[J].Quantitative Imaging in Medicine and Surgery,2017,7(1):59-78. [9]PARK H J,SUNG Y S,LEE S S,et al.Intravoxel incoherent motion diffusion-weighted MRI of the abdomen:the effect of fitting algorithms on the accuracy and reliability of the parameters[J].Journal of Magnetic Resonance Imaging,2017,45(6):1637-1647. [10]COHEN A D,SCHIEKE M C,HOHENWALTER M D,et al.The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver[J].Magnetic Resonance in Medicine,2015,73(1):306-311. [11]CHO G Y,MOY L,ZHANG J L,et al.Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer[J].Magnetic resonance in medicine,2015,74(4):1077-1085. [12]MEEUS E M,NOVAK J,WITHEY S B,et al.Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue[J].Journal of Magnetic Resonance Imaging,2017,45(5):1325-1334. [13]MERISAARI H,MOVAHEDI P,PEREZ I M,et al.Fittingmethods for intravoxel incoherent motion imaging of prostate cancer on region of interest level:Repeatability and gleason score prediction[J].Magnetic Resonance in Medicine,2017,77(3):1249. [14]FUSCO R,SANSON M,PETRILLO A.A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2017,30(2):113. [15]GUSTAFSSON O,MONTELIUS M,STARCK G,et al.Impact of Prior Distribution and Central Tendency Measure on Bayesian IVIM Model Fitting[J].Magnetic Resonance in Medicine,2018,79(3):1674. [16]ORTON M R,COLLINS D J,KOH D M,et al.Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling[J].Magnetic Resonance in Medicine,2013,71(1):411-420. [17]WHILE P T.A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI[J].Magnetic Resonance in Medicine,2017,78(6):2373-2387. [18]YE C,XU D,QIN Y,et al.Accurate intravoxel incoherent motion parameter estimation using Bayesian fitting and reduced number of low b-values[J].Medical Physics,2020,47(9):4372-4385. [19]BERTLEFF M,DOMSCH S,WEINGÄRTNER S,et al.Diffusion parameter mapping with the combined intravoxel inco-herent motion and kurtosis model using artificial neural networks at 3T[J].NMR in Biomedicine,2017,30(12):e3833. [20]BARBIERI S,GURNEY-CHAMPION O J,KLAASSEN R,et al.Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI[J].Magnetic Resonance in Medicine,2020,83(1):312-321. [21]KAANDORP M,BARBIERI S,KLAASSEN R,et al.Improved unsupervised physics-informed deep learning for intravoxel-incoherent motion modeling and evaluation in pancreatic cancer patients[J].Magnetic Resonance in Medicine,2021,86(4):2250-2265. [22]VASYLECHKO S D,WARFIELD S K,AFACAN O,et al.Self-supervised IVIM DWI parameter estimation with a physics based forward model[J].Magnetic Resonance in Medicine,2022,87(2):904-914. [23]HUANG H M.An unsupervised convolutional neural network method for estimation of intravoxel incoherent motion parameters[J].Physics in Medicine & Biology,IOP Publishing,2022,67(21):215018. [24]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015.2015:234-241. [25]KAANDORP M P T,ZIJLSTRA F,FEDERAU C,et al.Deep learning intravoxel incoherent motion modeling:Exploring the impact of training features and learning strategies[J].Magnetic Resonance in Medicine,2023,90(1):312. [26]MACKAY D.A practical Bayesian framework for backpropagation networks[J].Neural Computation,1992,4(3):448-472. [27]KIRKPATRICK J,PASCANU R,RABINOWITZ N,et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the national academy of sciences,National Acad Sciences,2017,114(13):3521-3526. [28]PASCANU R,BENGIO Y.Revisiting Natural Gradient for Deep Networks[C]//ICLR 2014.2014:1655-1658. [29]WÁNG Y X J,DENG M,LI Y T,et al.A Combined Use of Intravoxel Incoherent Motion MRI Parameters Can Differentiate Early-Stage Hepatitis-b Fibrotic Livers from Healthy Livers[J].SLAS TECHNOLOGY:Translating Life Sciences Innovation,2018,23(3):259-268. [30]CIRITSIS A,ROSSI C,WURNIG M C,et al.Intravoxel Incoherent Motion:Model-Free Determination of Tissue Type in Abdominal Organs Using Machine Learning[J].Investigative Radiology,2017,52(12):747-757. [31]WURNIG M C,DONATI O F,ULBRICH E,et al.Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects:Proposal of a standardized algorithm[J].Magnetic Resonance in Medicine,2015,74(5):1414-1422. [32]GAMBAROTA G,HITTI E,LEPORQ B,et al.Eliminating the blood-flow confounding effect in intravoxel incoherent motion(IVIM) using the non-negative least square analysis in liver[J].Magnetic Resonance in Medicine,2017,77(1):310-317. [33]LEE W,KIM B,PARK H W.Quantification of intravoxel incoherent motion with optimized b-values using deep neural network[J].Magnetic Resonance in Medicine,2021,86(1):230-244. [34]LEMKE A,STIELTJES B,SCHAD L R,et al.Toward an optimal distribution of b values for intravoxel incoherent motion ima-ging[J].Magnetic Resonance Imaging:An International Journal of Basic Research and Clinical Applications,2011,29(6):766-776. [35]JALNEFJORD O,ANDERSSON M,MONTELIUS M,et al.Comparison of methods for estimation of the intravoxel incoherent motion(IVIM) diffusion coefficient(D) and perfusion fraction(f)[J].Magnetic Resonance Materials in Physics,Biology and Medicine,2018,31(6):715-723. |
|