计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 286-292.doi: 10.11896/jsjkx.240300104
张金营1, 王天堃1, 么长英2, 谢华2, 柴林政3, 刘书恺3, 李彤亮4, 李舟军3
ZHANG Jinying1, WANG Tiankun1, YAO Changying2, XIE Hua2, CHAI Linzheng3, LIU Shukai3, LI Tongliang4, LI Zhoujun3
摘要: 大语言模型是近年来自然语言处理领域的一个重大突破,已成为该领域研究的一种新范式。在金融、法律等垂直领域,基于FinGPT,ChatLaw等垂直领域大模型的智能问答系统,促进了大模型技术在相关领域的学术研究与应用落地。然而,由于电力领域缺乏相关的高质量数据,相关的大模型问答系统的构建工作遇到了较大阻碍。为了构建电力领域的智能问答系统,提出了基于大语言模型的电力知识库智能问答系统 ChatPower。为了确保问答效果,ChatPower充分利用了电力管理各环节的数据。通过语义化理解,梳理和整合了大量的电力专业知识,精心设计和构建了一个较大规模的电力系统知识库。该知识库覆盖电力相关规章制度、安全生产管理体系以及发电设备故障知识等方面的内容。此外,通过参考检索到的电力知识,ChatPower显著缓解了问答中存在的模型幻觉问题,并在检索系统中引入了BM25检索、向量库检索与重排相结合的方法,有效降低了单纯依赖向量库检索的不准确性。同时,ChatPower结合基于大模型的提示工程技术,提升了对于规章制度类型问题生成回复的条理性。为了对问答系统进行评价,构建了一个电力知识问答的测试数据集,并对其进行了测试验证,测试结果表明:基于大语言模型的电力知识库问答系统ChatPower能够有效提升电力相关知识的检索和问答的准确性。
中图分类号:
[1]MOLLA D,VICEDO J L.Question Answering in Restricted Domains:An Overview[J].Computational Linguistics,2007,33(1):41-61. [2]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:A collaboratively created graph database for structuring human knowledge[C]//Proceedings of the ACM SIGMOD Interna-tional Conference on Management of Data(SIGMOD).Canada:ACM,2008:1247-1250. [3]LEHMANN J,ISELE R,JAKOB M,et al.DBpediaa large-scale,multilingual knowledge base extracted from Wikipedia[J].Semantic Web,2015,6(2):167-195. [4]PELLISSIER T T,VELIČKOVIĆ D,SCHAFFERT S,et al.From Freebase to Wikidata:The Great Migration[C]//Procee-dings of the International World Wide Web Conference(WWW).Canada:ACM,2016:1419-1428. [5]NOY N F,GAO Y,JAIN A,et al.Industry-scale KnowledgeGraphs:Lessons and Challenges[J].ACM Queue,2019,17(2):20. [6]ARUN K.Making search easier:How Amazon's Product Graph is helping customers find products more easily.Amazon Blog.[EB/OL].https://blog.aboutamazon.com/innovation/making-search-easier. [7]SAURABH S.Bring rich knowledge of people,places,thingsand local businesses to your apps[EB/OL].https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-andlocal-businesses-to-your-apps. [8]ABUJABAL A, YAHYA M, RIEDEWALD M,et al.Automated template generation for question answering over knowledge graphs[C]//Proceedings of the International World Wide Web Conference(WWW).Perth:ACM,2017:1191-1200. [9]LIU A,HUANG Z,LU H,et al.BB-KBQA:BERT-basedknowledge base question answering[C]//Proceedings of the 18th China National Conference on Chinese Computational Linguistics.Kunming:Springer,2019:81-92. [10]CHEN B, SUN L, HAN X P.Sequence-to-Action:End-to-end semantic graph generation for semantic parsing[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne:ACL, 2018:766-777. [11]BORDES A, CHOPRA S, WESTON J.Question answeringwith subgraph embeddings[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Doha:ACL,2014:615-620. [12]YANG H,LIU X Y,DAN W C.FinGPT:Open-Source FinancialLarge Language Models[C]//FinLLM Symposium at IJCAI 2023.2023. [13]CUI J,LI Z,YAN Y,et al.ChatLaw:Open-Source Legal Large Language Model with Integrated External Knowledge Bases[J].arXiv:2306.16092,2023. [14]DEVLIN J,CHANG M, LEE K,et al.BERT:Pre-training ofDeep bidirectional Transformers for Language Understanding[J].Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019,1(2):4171-4186. [15]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[EB/OL].https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf. [16]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS).Montreal,Canada:NIPS,2017:5998-6008. [17]OpenAI.Our approach to alignment research[EB/OL].https://openai.com/blog/our-approach-to-alignment-research. [18]OPENA I,JOSH A,STEVEN A,et al.GPT-4 Technical Report[J].arXiv:2303.08774,2023. [19]TOUVRON H,LOUIS M,KEVIN S,et al.Llama 2:Openfoundation and fine-tuned chat models[J].arXiv:2307.09288,2023. [20]ZENG A,LIU X,DU Z X,et al.Glm-130b:An open bilingual pre-trained model[J].arXiv:2210.02414,2022. [21]WEI X, CUI X Y, CHENG N,et al.Zero-shot information extraction via chatting with chatgpt[J].arXiv:2302.10205,2023. [22]BROWNT B, MANNB,RYDERN,et al.Language models are few-shot learners[C]//Advances in Neural Information Processing Systems.Curran Associates,Inc,2020:1877-1901. [23]WEI J,WANG X Z,SCHUURMANS D,et al.Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems.Curran Associates,Inc,2022:24824-24837. [24]WELLECK S,KULIKOV I,ROLLER S, et al.Neural text ge-neration with unlikelihood training[C]//International Confe-rence on Learning Representations.Addis Ababa:OpenReview.net:2020. [25]YAO S Y,YU D,ZHAO J,et al.Tree of thoughts:Deliberate problem solving with large language models[J].arXiv:2305.10601,2023. [26]YAO Y,LI Z C,ZHAO H.Beyond Chain-of-Thought,Effective Graph-of-Thought Reasoning in Large Language Models[J].arXiv:2305.16582,2023. [27]CHEN W H,MA X G,WANG X Y,et al.Program of thoughts prompting:Disentangling computation from reasoning for numerical reasoning tasks[J].arXiv:2211.12588,2022. [28]LUO K,LIN F,LUO X,et al.Knowledge base question answe-ring via encoding of complex query graphs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels:Association for Computational Linguistics,2018:2185-2194. [29]ZHU S,CHENG X,SU S.Knowledge-based question answering by tree-to-sequence learning[J].Neurocomputing,2020,372:64-72. [30]MILLER A H,FISCH A,DODGE J,et al.Key-value memorynetworks for directly reading documents[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.Austin:The Association for Computational Linguistics,2016:1400-1409. [31]SHI J X,CAO S L,HOU L,et al.TransferNet:An effective and transparent framework for multi-hop question answering over relation graph[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.Punta Cana:The Association for Computational Linguistics,2021:4143-4158. [32]LUO H R,EH H,TANG Z C,et al.ChatKBQA:A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models[J].arXiv:2310.08975,2023. |
|