计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 259-268.doi: 10.11896/jsjkx.240400143
刘威, 许勇, 方娟, 李城, 祝玉军, 方群, 何昕
LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin
摘要: 空中手写体识别是一项前景广阔的人机交互技术。单一传感器挖掘手势特征,如毫米波雷达、相机和Wi-Fi,均难以捕捉完整的手势特征。对此,设计了一种灵活的双流融合网络(Two-Stream Fusion Networks,TFNet)模型。该模型既可以融合空中手写体能量图(Air-writing Energy Images,AEIs)和点云时间序列特征图(Point Cloud Temporal Feature Maps,PTFMs),又能仅以单模态数据作为网络的输入。同时,构建了一种鲁棒可靠的多模态空中手写体识别系统。该系统采用硬触发方式启动和结束多传感器数据采集,分别处理同时间序列内的图像和点云数据,生成AEIs和PTFMs,实现多模态数据时间对齐。经过分支网络,对手势外观和细粒度运动信息进行特征提取,结合自适应加权权重,融合双分支决策结果,避免了多模态中间特征的复杂交互,有效地降低了模型的损失。采集多名实验者空中书写0-9共10个数字的空中手写体数据对模型进行评估,结果表明,所提模型在识别精度方面优于其他基线模型,且具有较强的鲁棒性,在空中手写体识别任务中表现出明显优势,可成为多传感器在空中手写体识别任务中的有效工具。
中图分类号:
[1]KÖPÜKLÜ O,LEDWON T,RONG Y,et al.Drivermhg:Amulti-modal dataset for dynamic recognition of driver micro hand gestures and a real-time recognition framework[C]//2020 15th IEEE International Conference on Automatic Face and Gesture Recognition(FG 2020).IEEE,2020:77-84. [2]SHARMA S,SINGH S.Vision-based hand gesture recognition using deep learning for the interpretation of sign language[J].Expert Systems with Applications,2021,182:115657. [3]ZHOU L Y,ZHANG J H,YUAN T T,et al.Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion[J].Computer Science,2022,49(9):155-161. [4]LIU H,ZHOU A,DONG Z,et al.M-gesture:Person-independent real-time in-air gesture recognition using commodity millimeter wave radar[J].IEEE Internet of Things Journal,2021,9(5):3397-3415. [5]MAHMOUD N M,FOUAD H,SOLIMAN A M.Smart healthcare solutions using the internet of medical things for hand gesture recognition system[J].Complex & Intelligent Systems,2021,7:1253-1264. [6]LIU H,LIU Z.A multimodal dynamic hand gesture recognition based on radar-vision fusion[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-15. [7]TANG X,YAN Z,PENG J,et al.Selective spatiotemporal features learning for dynamic gesture recognition[J].Expert Systems with Applications,2021,169:114499. [8]WATANABE T,MANIRUZZAMAN,HASAN M A,et al.2D Camera-based air-writing recognition using hand pose estimation and hybrid deep learning model[J].Electronics,2023,12(4):995-1009. [9]QI J,MA L,CUI Z,et al.Computer vision-based hand gesture recognition for human-robot interaction:a review[J].Complex &Intelligent Systems,2024,10(1):1581-1606. [10]LIN C,AHMAD A,QU R,et al.A handwriting recognition system with wifi[J].IEEE Transactions on Mobile Computing,2023,23(4):3391-3409. [11]GUO Z,XIAO F,SHENG B,et al.WiReader:Adaptive airhandwriting recognition based on commercial WiFi signal[J].IEEE Internet of Things Journal,2020,7(10):10483-10494. [12]AHMED S,KIM W,PARK J,et al.Radar-based air-writing gesture recognition using a novel multistream CNN approach[J].IEEE Internet of Things Journal,2022,9(23):23869-23880. [13]SALAMI D,HASIBI R,PALIPANA S,et al.Tesla-rapture:A lightweight gesture recognition system from mmwave radar sparse point clouds[J].IEEE Transactions on Mobile Computing,2022,22(8):4946-4960. [14]YAN X Y,LU F F,GE L S,et al.Image Style Transfer Based on the Distribution Matching of the Style Features[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2023,40(3):48-55. [15]SHI Y,DU L,CHEN X,et al.Robust gait recognition based on deep CNNs with camera and radar sensor fusion[J].IEEE Internet of Things Journal,2023,10(12):10817-10832. [16]CHEN Y S,CHENG K H.BiCLR:Radar-Camera-based Cross-Modal Bi-Contrastive Learning for Human Motion Recognition[J].IEEE Sensors Journal,2024,24(3):4102-4119. [17]SINGH A D,SANDHA S S,GARCIA L,et al.Radhar:Human activity recognition from point clouds generated through a millimeter-wave radar[C]//Proceedings of the 3rd ACM Workshop on Millimeter-wave Networks and Sensing Systems.2019:51-56. [18]YAN B,WANG P,DU L,et al.mmGesture:Semi-supervisedgesture recognition system using mmWave radar[J].Expert Systems with Applications,2023,213:119042. [19]ZHAO P,LU C X,WANG B,et al.Cubelearn:End-to-end lear-ning for human motion recognition from raw mmwave radar signals[J].IEEE Internet of Things Journal,2023,10(12):10236-10249. [20]SAHOO J P,PRAKASH A J,PĹAWIAK P,et al.Real-time hand gesture recognition using fine-tuned convolutional neural network[J].Sensors,2022,22(3):706-720. [21]RASTGOO R,KIANI K,ESCALERA S.Real-time isolatedhand sign language recognition using deep networks and SVD[J].Journal of Ambient Intelligence and Humanized Computing,2022,13(1):591-611. [22]SIMONYAN K,ZISSERMAN A.Two-stream convolutionalnetworks for action recognition in videos[J].Advances in Neural Information Processing Systems,2014,27:568-576. [23]FEICHTENHOFER C,PINZ A,ZISSERMAN A.Convolutional two-stream network fusion for video action recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1933-1941. [24]GUO X,DU J,GAO J,et al.Pedestrian detection based on fusion of millimeter wave radar and vision[C]//Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition.2018:38-42. [25]NOBIS F,GEISSLINGER M,WEBER M,et al.A deep learning-based radar and camera sensor fusion architecture for object detection[C]//2019 Sensor Data Fusion:Trends,Solutions,Applications(SDF).IEEE,2019:1-7. [26]CHADWICK S,MADDERN W,NEWMAN P.Distant vehicledetection using radar and vision[C]//2019 International Conference on Robotics and Automation(ICRA).IEEE,2019:8311-8317. [27]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542. [28]GROBELNY P,NARBUDOWICZ A.Hand gestures recordedwith mm-Wave FMCW radar(AWR1642)[DB/OL].(2021-06-03)[2024-06-02].https://dx.doi.org/10.21227/wh5w-c362. [29]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [30]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [31]QI C R,SU H,MO K,et al.Pointnet:Deep learning on pointsets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [32]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [33]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [34]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [35]XU L,ZHANG K,YANG G,et al.Gesture recognition usingdual-stream CNN based on fusion of sEMG energy kernel phase portrait and IMU amplitude image[J].Biomedical Signal Processing and Control,2022,73:103364. [36]CHEN J C,LEE C Y,HUANG P Y,et al.Driver behavior analy-sis via two-stream deep convolutional neural network[J].Applied Sciences,2020,10(6):1908-1922. |
|