计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 151-160.doi: 10.11896/jsjkx.240400159
黄星宇, 王丽会, 唐堃, 程欣宇, 张健, 叶晨
HUANG Xingyu, WANG Lihui, TANG Kun, CHENG Xinyu, ZHANG Jian, YE Chen
摘要: 医学图像配准对于多种后处理步骤至关重要。目前基于卷积和Transformer的单流或双流网络架构能够实现良好的配准性能,但在配准性能与计算效率之间仍然难以取得平衡。为了解决这个问题,提出了一种高效的Transformer配准网络EFormer。其主要由分频器模块(Frequency Division Module,FDM)和广注意力模块(Broad Attention Module,BAM)组成。具体而言,在编解码器中使用多个FDM模拟双流网络并行提取局部-全局信息以提高计算效率;利用BAM增强多个FDM中局部信息的传递以保留配准中重要的语义特征。在3个数据集上的定性和定量比较实验结果表明,相比主流配准模型,EFormer在DSC,ASSD,HD95和雅可比行列式负值百分比4个评价指标上分别至少优化了1.3%,2.6%,0.6%和95%。此外,使用EFormer-tiny时,计算效率(Flops)优化了14%,表明EFormer能够以最快的计算速度在基于Transformer的网络中实现最佳的配准结果。
中图分类号:
[1]VEIGA C,JANSSENS G,TENG C L.First Clinical Investigation of Cone Beam Computed Tomography and Deformable Re-gistration for Adaptive Proton Therapy for Lung Cancer[J].International Journal of Radiation Oncology Biology Physics,2016,95(1):549-559. [2]NAKAO M,KOBAYASHI K,TOKUNO J.Deformation analysis of surface and bronchial structures in intraoperative pneumothorax using deformable mesh registration[J].Medical Image Analysis,2021,73:102181. [3]ALVAREZ P,ROUZÉ S,MIGA M I.A hybrid,image-based and biomechanics-based registration approach to markerless intra-operative nodule localization during video-assisted thoracoscopic surgery[J].Medical Image Analysis,2021,69:101983. [4]VERCAUTEREN T,PENNEC X,PERCHANT A.Diffeomorphic demons:Efficient non-parametric image registration[J].NeuroImage,2009,45(1):S61-S72. [5]SHEN D G,DAVATZIKOS C.HAMMER:hierarchical attri-bute matching mechanism for elastic registration[J].IEEE Transactions on Medical Imaging,2002,21(11):1421-1439. [6]AVANTS B B,EPSTEIN C L,GROSSMAN M.Symmetric diffeomorphic image registration with cross-correlation:Evaluating automated labeling of elderly and neurodegenerative brain[J].Medical Image Analysis,2008,12(1):26-41. [7]BEG M F,MILLER M I,TROUVÉ A.Computing Large De-formation Metric Mappings via Geodesic Flows of Diffeomorphisms[J].International Journal of Computer Vision,2005,61(2):139-157. [8]HEINRICH H P,JENKINSON M,BRADY M.MRF-Based Deformable Registration and Ventilation Estimation of Lung CT[J].IEEE Transactions on Medical Imaging,2013,32(7):1239-1248. [9]KLEIN S,STARING M,MURPHY K.elastix:A Toolbox forIntensity-Based Medical Image Registration[J].IEEE Transactions on Medical Imaging,2010,29(1):196-205. [10]HELLIER P,ASHBURNER J,COROUGE I.Inter-subject Re-gistration of Functional and Anatomical Data Using SPM[M]//Berlin:Springer,2002:590-597. [11]MAES F,COLLIGNON A,VANDERMEULEN D.Multi-modality Image Registration by Maximization of Mutual Information[J].IEEE Transactions on Medical Imaging,1997,16(2):187-198. [12]DE VOS B D,BERENDSEN F F,VIERGEVER M A.End-to-End Unsupervised Deformable Image Registration with a Con-volutional Neural Network[C]//LNIP.2017:204-212. [13]JADERBERG M,SIMONYAN K,ZISSERMAN A.SpatialTransformer Networks[C]//Proceedings of the 29 International Conference on Neural Information Processing System.2015:2017-2025. [14]BALAKRISHNAN G,ZHAO A,SABUNCU M R.An Unsupervised Learning Model for Deformable Medical Image Registration[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:9252-9260. [15]CHEN X,RAVIKUMAR N,XIA Y.A Deep Discontinuity-Preserving Image Registration Network[J].arXiv:2107.04440,2021. [16]ZHENG Z.Feature self-calibration network with global-localtraining strategy for multi-region deformable medical image re-gistration[J].Neural Computing and Applications,2022,34:17175-17191. [17]CHE T,WANG X,ZHAO K.AMNet:Adaptive multi-level network for deformable registration of 3D brain MR images[J].Medical Image Analysis,2023,85:102740. [18]ZHAO S,DONG Y,CHANG E.Recursive Cascaded Networks for Unsupervised Medical Image Registration[C]//2019 IEEE/CVF International Conference on Computer Vision.2019:10599-10609. [19]KIM B.CycleMorph:Cycle consistent unsupervised deformable image registration[J].Medical Image Analysis,2021,71:102036. [20]SHEN Y,YAN Y,SONG J,et al.Brain magnetic resonanceimage registration based on parallel lightweight convolution and multi-scale fusion[J].Journal of Biomedical Engineering,2024,41(2):213-219. [21]JIA X,BARTLETT J,ZHANG T.U-Net vs Transformer:Is U-Net Outdated in Medical Image Registration?[J].arXiv:2208.04939,2022. [22]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N.UNet++:Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation[J].IEEE Transactions on Medical Imaging,2020,39(6):1856-1867. [23]CHEN J,HE Y,FREY E C.ViT-V-Net:Vision Transformer for Unsupervised Volumetric Medical Image Registration[J].ar-Xiv:2104.06468,2021. [24]CHEN J,FREY E C,HE Y.TransMorph:Transformer for unsupervised medical image registration[J].arXiv:2111.10480,2022. [25]LIU Z,LIN Y,CAO Y.Swin Transformer:Hierarchical Vision Transformer using Shifted Windows[J].arXiv:2103.14030,2021. [26]MOK T C W,CHUNG A C S.Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:4644-4653. [27]MA M,SONG L,XU Y.Symmetric Transformer-based Net-work for Unsupervised Image Registration[J].arXiv:2204.13575,2022. [28]WANG N N,CHENG Y Z.Cascaded Block Registration Model Based on Multi-spatial Information Extraction[J].Computer Systems & Applications,2023,33(2):125-133. [29]ZHAO X,LI X J,XU J,et al.Parallel medical image registration model based on convolutional neural network and Transformer[J].Journal of Computer Applications,2024(12):3915-3921. [30]HU X,KANG M,HUANG W.Dual-Stream Pyramid Registration Network[J].arXiv:1909.11966,2019. [31]SUN Y,MOELKER A,NIESSEN W J.Towards Robust CT-Ultrasound Registration Using Deep Learning Methods[C]//Understanding and Interpreting Machine Learning in Medical Image Computing Applications.Cham:Springer,2018:43-51. [32]CHEN X,ZHOU B,XIE H.Dual-Branch Squeeze-Fusion-Excitation Module for Cross-Modality Registration of Cardiac SPECT and CT[J].arXiv:2206.05278,2022. [33]MA M,LIU G,SONG L.SEN-FCB:an unsupervised twinning neural network for image registration[J].Applied Intelligence,2023,53(10):12198-12209. [34]FAN X,ZHUANG S,ZHUANG Z.SearchMorph:Multi-scale Correlation Iterative Network for Deformable Registration[J].arXiv:2206.13076,2022. [35]FISCHL B.FreeSurfer[J].NeuroImage,2012,62(2):774-781. [36]HERING A,HANSEN L,MOK T C W.Learn2Reg:compre-hensive multi-task medical image registration challenge,dataset and evaluation in the era of deep learning[J].IEEE Transactions on Medical Imaging,2022,42(3):697-712. [37]PASZKE A,GROSS S,MASSA F.PyTorch:An ImperativeStyle,High-Performance Deep Learning Library[C]//NeurIPS 2019.2019. [38]LUO W,LI Y,URTASUN R.Understanding the Effective Receptive Field in Deep Convolutional Neural Networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:4905-4913. [39]NAKKIRAN P,KAPLUN G,BANSAL Y.Deep double de-scent:where bigger models and more data hurt*[J].Journal of Statistical Mechanics:Theory and Experiment,2021,2021(12):124003. |
|