计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 170-188.doi: 10.11896/jsjkx.240400209

• 计算机图形学&多媒体 • 上一篇    下一篇

生物启发的运动行人视觉不变性响应神经网络

于世海1,2, 胡滨1,2,3   

  1. 1 贵州大学计算机科学与技术学院公共大数据国家重点实验室 贵阳 550025
    2 贵州大学计算机科学与技术学院 贵阳 550025
    3 贵州大学人工智能研究院 贵阳 550025
  • 收稿日期:2024-04-30 修回日期:2024-09-08 发布日期:2025-07-17
  • 通讯作者: 胡滨(bhu1@gzu.edu.cn)
  • 作者简介:(834250889@qq.com)
  • 基金资助:
    国家自然科学基金(62066006);贵州省自然科学基金(黔科合基础[2020]1Y261,黔科合基础[2019]1178);贵州大学引进人才科研项目(贵大人基合字(2019)58号)

Bio-inspired Neural Network with Visual Invariant Response to Moving Pedestrian

YU Shihai1,2, HU Bin1,2,3   

  1. 1 State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
    2 College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
    3 Artificial Intelligence Research Institute, Guizhou University, Guiyang 550025, China
  • Received:2024-04-30 Revised:2024-09-08 Published:2025-07-17
  • About author:YU Shihai,born in 1997,postgraduate.His main research interests include computer intelligence and computer vision.
    HU Bin,born in 1977,Ph.D,professor,Ph.D supervisor,is a senior member of CCF(No.F8648S).His main research interests include computer intelligence,neural computing,computer vision and artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(62066006),Natural Science Foundation of Guizhou Province,China(QKHJC[2020]1Y261,QKHJC[2019]1178) and Scientific Research Project for the Introduced Talents of Guizhou University(GDRJHZ(2019)58).

摘要: 视觉不变性是生物视脑认知机能的重要神经调谐响应特性,但目前还尚无关于该神经特性在运动行人视觉感知问题研究中的计算模型。针对该问题,基于哺乳动物视觉神经结构特性,借助人类大脑内侧颞叶区(MTL)神经元尖峰响应机理以及人体运动力学特性,提出一种适用于运动行人视觉感知与不变性响应的人工视觉神经网络(mpvirNN)。所提出的神经网络包括两个部分:突触前网络和突触后网络。突触前网络基于哺乳动物视网膜视觉信息加工处理机制,感知视野域中行人对象的低阶视觉运动信息;突触后网络提取行人运动周期频率视觉线索,整合输出表征视觉响应的神经膜电位簇。系统性的实验研究表明,mpvirNN能有效感知视觉场景中的运动行人对象,产生具有视觉不变性特性的神经尖峰响应输出。研究涉及生物视脑认知神经机制启发的运动行人视觉动态信息加工处理,可为人工智能中的行人检测与认知识别研究提供新思想、新方法。

关键词: 视觉不变性, 神经尖峰响应, 人体运动力学特性, 运动行人, 视网膜神经, 视觉运动感知

Abstract: Visual invariance is a cardinal neural tuning response for the cognitive function in biological vision-brain systems,but no computational model has been reported for one such issue to the moving pedestrian vision perception.To fill this gap,a bio-inspired artificial visual neural network(mpvirNN) with visual invariant response to moving pedestrian perception is investigated,based on the current researches revealed by biological studies,including the structural properties of mammalian retina,the spiking response mechanism of neurons in the medial temporal lobe area(MTL) of the human brain,and the kinetics properties of human.The proposed neural network consists of two count-parts:presynaptic network and postsynaptic network.The presynaptic network captures low-order visual motion information of pedestrian objects in the field of view,by means of the visual information processing mechanism in mammalian retina.The postsynaptic network extracts visual cues of pedestrian motion frequency properties,and integrates them to generate the neural membrane potential clusters against to the object in the field of view.Systematic experimental studies show that mpvirNN can effectively perceive moving pedestrian in different visual scenes and tune neural spike response with visual invariance properties.This work is involved in the processing of visual dynamic information inspired by biological vision-brain systems,which can contribute some new ideas and methods for pedestrian detection and cognitive recognition research in artificial intelligence.

Key words: Visual invariance, Neural spiking response, Human kinetics property, Moving pedestrian, Retinal nerve, Visual motion perception

中图分类号: 

  • TP183
[1]YE M,SHEN J,LIN G,et al.Deep Learning for Person Re-Identification:A Survey and Outlook[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(6):2872-2893.
[2]LENG Q,YE M,TIAN Q.A Survey of Open-World Person Re-Identification[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,30(4):1092-1108.
[3]MING Z,ZHU M,WANG X,et al.Deep Learning-Based Person Re-Identification Methods:A Survey and Outlook of Recent Works[J].Image and Vision Computing,2022,119:104394.
[4]JI S,LI J,DU T Y,et al.Survey on Techniques,Applications and Security of Machine Learning Interpretability[J].Journal of Computer Research and Development,2019,56(10):2071-2096.
[5]YUE S,RIND F C.Collision Detection in Complex DynamicScenes Using An Lgmd-Based Visual Neural Network with Feature Enhancement[J].IEEE Transactions on Neural Networks,2006,17(3):705-716.
[6]YUE S,RIND F C.A Collision Detection System for A Mobile Robot Inspired by the Locust Visual System[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation.2005:3832-3837.
[7]YUE S,RIND F C.Redundant Neural Vision Systems-Competing for Collision Recognition Roles[J].IEEE Transactions on Autonomous Mental Development,2013,5(2):173-186.
[8]HU B,ZHANG Z.Bio-Inspired Visual Neural Network on Spatio-Temporal Depth Rotation Perception[J].Neural Computing and Applications,2021,33(16):10351-10370.
[9]HU B,YUE S,ZHANG Z.A Rotational Motion PerceptionNeural Network Based on Asymmetric Spatiotemporal Visual Information Processing[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(11):2803-2821.
[10]ZHANG B,HU B.Neural Network for Moving Small Target Pedestrian Detection Based on Episodic Memory[J].Computer Engineering and Applications,2022,58(15):169-183.
[11]LIU C,HU B.Bio-Inspired Neural Network for Perceiving Suddenly Localized Crowd Gathering[J].Computer Engineering and Applications,2022,58(16):164-174.
[12]HU B,ZHANG Z,LI L.Lgmd-Based Visual Neural Networkfor Detecting Crowd Escape Behavior[C]//2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems(CCIS).IEEE,2018:772-778.
[13]REY H G,GORI B,CHAURE F J,et al.Single Neuron Coding of Identity in the Human Hippocampal Formation[J].Current Biology,2020,30(6):1152-1159.
[14]DE KOCK C P J,PIE J,PIENEMAN A W,et al.High-Frequency Burst Spiking in Layer 5 Thick-Tufted Pyramids of Rat Primary Somatosensory Cortex Encodes Exploratory Touch[J].Communications Biology,2021,4(1):709.
[15]QUIAN QUIROGA R,BOSCAGLIA M,JONAS J,et al.Single Neuron Responses Underlying Face Recognition in the Human Midfusiform Face-Selective Cortex[J].Nature Communications,2023,14(1):5661.
[16]REY H G,FRIED I,QUIAN QUIROGA R.Timing of Single-Neuron and Local Field Potential Responses in the Human Medial Temporal Lobe[J].Current Biology,2014,24(3):299-304.
[17]NING E,WANG C,ZHANG H,et al.Occluded Person Re-Identification with Deep Learning:A Survey and Perspectives[J].Expert Systems with Applications,2024,239:122419.
[18]ZAHRA A,PERWAIZ N,SHAHZAD M,et al.Person Re-Identification:A Retrospective on Domain Specific Open Challenges and Future Trends[J].Pattern Recognition,2023,142:109669.
[19]HUANG N,LIU J,MIAO Y,et al.Deep Learning for Visible-Infrared Cross-Modality Person Re-Identification:A Comprehensive Review[J].Information Fusion,2023,91:396-411.
[20]HUANG Y,WU Q,ZHANG Z,et al.Meta Clothing Status Cali-bration for Long-Term Person Re-Identification[J].IEEE Transactions on Image Processing,2024,33:2334-2346.
[21]BAZZANI L,CRISTANI M,PERINA A,et al.Multiple-ShotPerson Re-Identification by Hpe Signature[C]//2020 21th International Conference on Pattern Recognition.2010:1413-1416.
[22]CHENG D S,CRISTANI M,STOPPA M,et al.Custom Pictorial Structures for Re-Identification[C]//BMVC 2011.2011:1-11.
[23]MA B,SU Y,JURIE F.Bicov:A Novel Image Representation for Person Re-Identification and Face Verification[C]//BMVC 2012.2012.
[24]BAZZANI L,CRISTANI M,MURINO V.Symmetry-DrivenAccumulation of Local Features for Human Characterization and Re-Identification[J].Computer Vision and Image Understan-ding,2013,117(2):130-144.
[25]BUHRMESTER V,MÜNCH D,ARENS M.Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision:A Survey[J].Machine Learning and Knowledge Extraction,2021,3(4):966-989.
[26]LINARDATOS P,PAPASTEFANOPOULOS V,KOTSIAN-TIS S.Explainable AI:A Review of Machine Learning Interpretability Methods[J].Entropy,2021,23(1):18.
[27]CARVALHO D V,PEREIRA E M,CARDOSO J S.Machine Learning Interpretability:A Survey on Methods and Metrics[J].Electronics,2019,8(8):832.
[28]HUBEL D,WIESEL T.David Hubel and Torsten Wiesel[J].Neuron,2012,75(2):182-184.
[29]CAI Y,PIETIKÄINEN M.Person Re-Identification Based onGlobal Color Context[C]//Computer Vision-ACCV 2010.2010:205-215.
[30]BEDAGKAR-GALA A,SHAH S K.Multiple Person Re-Identification Using Part Based Spatio-Temporal Color Appearance Model[C]//Proceedings of the IEEE International Conference on Computer Vision.2011:1721-1728.
[31]KVIATKOVSKY I,ADAM A,RIVLIN E.Color Invariants for Person Reidentification[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,2013,35(7):1622-1634.
[32]WU S,CHEN Y C,LI X,et al.An Enhanced Deep Feature Re-presentation for Person Re-Identification[C]//2016 IEEE Winter Conference on Applications of Computer Vision(WACV).2016:1-8.
[33]LI Y,ZHUO L,HU X,et al.A Combined Feature Representation of Deep Feature and Hand-Crafted Features for Person Re-Identification[C]//Proceedings of the 2016 IEEE International Conference on Progress in Informatics and Computing.2017:224-227.
[34]DING S,LIN L,WANG G,et al.Deep Feature Learning with Relative Distance Comparison for Person Re-Identification[J].Pattern Recognition,2015,48(10):2993-3003.
[35]VIDHYALAKSHMI M K,POOVAMMAL E,BHASKAR V,et al.Novel Similarity Metric Learning Using Deep Learning and Root Sift for Person Re-Identification[J].Wireless Personal Communications,2021,117(3):1835-1851.
[36]LIU H,FENG J,QI M,et al.End-to-End Comparative Atten-tion Networks for Person Re-Identification[J].IEEE Transactions on Image Processing,2017,26(7):3492-3506.
[37]ZHANG Z,HUANG M.Learning Local Embedding Deep Features for Person Re-Identification in Camera Networks[J].Eurasip Journal on Wireless Communications and Networking,2018,2018(1):1-9.
[38]FAN X,JIANG W,LUO H,et al.SphereReID:Deep Hypersphere Manifold Embedding for Person Re-Identification[J].Journal of Visual Communication and Image Representation,2019,60:51-58.
[39]ZHANG C,WU L,WANG Y.Crossing Generative Adversarial Networks for Cross-View Person Re-Identification[J].Neurocomputing,2019,340:259-269.
[40]HUANG Y,XU J,WU Q,et al.Multi-Pseudo Regularized Label for Generated Data in Person Re-Identification[J].IEEE Transactions on Image Processing,2019,28(3):1391-1403.
[41]HAN J,BHANU B.Individual Recognition Using Gait EnergyImage[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(2):316-322.
[42]YOO J H,MOON K Y,HWANG D,et al.Automated Human Recognition by Gait Using Neural Network[C]//2008 First Workshops on Image Processing Theory,Tools and Applications.IEEE,2008:1-6.
[43]TAFAZZOLI F,SAFABAKHSH R.Model-Based Human Gait Recognition Using Leg and Arm Movements[J].Engineering Applications of Artificial Intelligence,2010,23(8):1237-1246.
[44]KUSAKUNNIRAN W.Recognizing Gaits on Spatio-Temporal Feature Domain[J].IEEE Transactions on Information Forensics and Security,2014,9(9):1416-1423.
[45]SEPAS-MOGHADDAM A,GHORBANI S,TROJE N F,et al.Gait Recognition Using Multi-Scale Partial Representation Transformation with Capsules[C]//2020 25th International Conference on Pattern Recognition(ICPR).2021:8045-8052.
[46]MA K,CAO C,HU X,et al.Dynamic Aggregated Network for Gait Recognition[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2023:22076-22085.
[47]GHEISSARI N,SEBASTIAN T B,TU P H,et al.Person Re-Identification Using Spatio-Temporal Appearance[C]//Procee-dings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2006:1528-1535.
[48]BAĄK S,CORVEE E,BRÉMOND F,et al.Person Re-Identification Using Spatial Covariance Regions of Human Body Parts[C]//IEEE International Conference on Advanced Video and Signal Based Surveillance.2010:435-440.
[49]SATTA R,FUMERA G,ROLI F,et al.A Multiple Component Matching Framework for Person Re-Identification[C]/ICIAP 2011.2011:140-149.
[50]JAVED O,SHAFIQUE K,SHAH M.Appearance Modeling for Tracking in Multiple Non-Overlapping Cameras[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2005:26-33.
[51]HIRZER M,BELEZNAI C,ROTH P M,et al.Person Re-Iden-tification by Descriptive and Discriminative Classification[C]//Image Analysis:17th Scandinavian Conference.2011:91-102.
[52]ZHUN Z,LIANG Z,ZHIMING L,et al.Invariance Matters:Exemplar Memory for Domain Adaptive Person Re-Identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:598-607.
[53]ZHANG Z,ZHANG H,LIU S.Person Re-Identification Using Heterogeneous Local Graph Attention Networks[C]//Procee-dings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2021:12131-12140.
[54]QUIROGA R Q.Concept Cells:the Building Blocks of Declarative Memory Functions[J].International Journal of Psychophy-siology,2016,108(8):32.
[55]RUTISHAUSER U,REDDY L,MORMANN F,et al.The Architecture of Human Memory:Insights from Human Single-Neuron Recordings[J].Journal of Neuroscience,2021,41(5):883-890.
[56]LI X,WANG S.Simple and Complex Cells Revisited:toward a Selectivity-Invariance Model of Object Recognition[EB/OL].https://digitalcommons.wustl.edu/cgi/viewcontent.cgi?article=4395&context=oa_4.
[57]MARTIN C B,BARENSE M D.Perception and Memory in the Ventral Visual Stream and Medial Temporal Lobe[J].Annual Review of Vision Science,2023,9:409-434.
[58]TIESINGA P,FELLOUS J M,SEJNOWSKI T J.Regulation of Spike Timing in Visual Cortical Circuits[J].Nature Reviews Neuroscience,2008,9(2):97-107.
[59]EYAL G,VERHOOG M B,TESTA-SILVA G,et al.HumanCortical Pyramidal Neurons:from Spines to Spikes Via Models[J].Frontiers in Cellular Neuroscience,2018,12:365369.
[60]HARVEY R E,ROBINSON H L,LIU C,et al.Hippocampo-Cortical Circuits for Selective Memory Encoding,Routing,and Replay[J].Neuron,2023,111(13):2076-2090.
[61]REY H G,DE FALCO E,ISON M J,et al.Encoding of Long-Term Associations through Neural Unitization in the Human Medial Temporal Lobe[J].Nature Communications,2018,9(1):4372.
[62]PARK J.Synthesis of Natural Arm Swing Motion in Human Bipedal Walking[J].Journal of Biomechanics,2008,41(7):1417-1426.
[63]MEYNS P,BRUIJN S M,DUYSENS J.The How and Why of Arm Swing During Human Walking[J].Gait and Posture,2013,38(4):555-562.
[64]GOUDRIAAN M,JONKERS I,VAN DIEEN J H,et al.ArmSwing in Human Walking:What is Their Drive?[J].Gait and Posture,2014,40(2):321-326.
[65]SUTHERLAND D,OLSHEN R,COOPER L,et al.The Deve-lopment of Mature Gait[J].The Journal of Bone and Joint Surgery,1980,62(3):336-353.
[66]NEPTUNE R R,CLARK D J,KAUTZ S A.Modular Control of Human Walking:A Simulation Study[J].Journal of Biomecha-nics,2009,42(9):1282-1287.
[67]LUCAS R J.Mammalian Inner Retinal Photoreception[J].Current Biology,2013,23(3):R125-R133.
[68]XIN D,BLOOMFIELD S A.Dark-and Light-Induced Changes in Coupling between Horizontal Cells in Mammalian Retina[J].Journal of Comparative Neurology,1999,405(1):75-87.
[69]EULER T,HAVERKAMP S,SCHUBERT T,et al.Retinal Bipolar Cells:Elementary Building Blocks of Vision[J].Nature Reviews Neuroscience,2014,15(8):507-519.
[70]KOLB H.Amacrine Cells of the Mammalian Retina:Neurocircuitry and Functional Roles[J].Eye,1997,11(6):904-923.
[71]SERNAGOR E,EGLEN S J,WONG R O L.Development of Retinal Ganglion Cell Structure and Function[J].Progress in Retinal and Eye Research,2001,20(2):139-174.
[72]VAN ESSEN D C,GALLANT J L.Neural Mechanisms of Form and Motion Processing in the Primate Visual System[J].Neuron,1994,13(1):1-10.
[73]MCFADYEN J,DOLAN R J,GARRIDO M I.The Influence of Subcortical Shortcuts on Disordered Sensory and Cognitive Processing[J].Nature Reviews Neuroscience,2020,21(5):264-276.
[74]HAXBY J V,GOBBINI M I,NASTASE S A.Naturalistic Sti-muli Reveal A Dominant Role for Agentic Action in Visual Representation[J].NeuroImage,2020,216:116561.
[75]WIXTED J T,SQUIRE L R.The Medial Temporal Lobe and the Attributes of Memory[J].Trends in Cognitive Sciences,2011,15(5):210-217.
[76]BUETTI S,CRONIN D A,MADISON A M,et al.Towards A Better Understanding of Parallel Visual Processing in Human Vision:Evidence for Exhaustive Analysis of Visual Information[J].Journal of Experimental Psychology:General,2016,145(6):672-707.
[77]WÄSSLE H,BOYCOTT B B.Functional Architecture of theMammalian Retina[J].Physiological Reviews,1991,71(2):447-480.
[78]GOLLISCH T,MEISTER M.Eye Smarter than Scientists Believed:Neural Computations in Circuits of the Retina[J].Neuron,2010,65(2):150-164.
[79]KAWAI F.Certain Retinal Horizontal Cells Have A Center-Surround Antagonistic Organization[J].Journal of Neurophy-siology,2022,128(5):1337-1343.
[80]HERRMANN R,LEE B,ARSHAVSKY V Y.Rgs9 Knockout Causes A Short Delay in Light Responses of On-Bipolar Cells[J].PLoS ONE,2011,6(11):e27573.
[81]HSUEH H A,MOLNAR A,WERBLIN F S.Amacrine-to-Amacrine Cell Inhibition in the Rabbit Retina[J].Journal of Neurophysiology,2008,100(4):2077-2088.
[82]D’SOUZA S,LANG R A.Retinal Ganglion Cell InteractionsShape the Developing Mammalian Visual System[J].Development,2020,147(23):196535.
[83]THORESON W B,MANGEL S C.Lateral Interactions in the Outer Retina[J].Progress in Retinal and Eye Research,2012,31(5):407-441.
[84]RIND F C,WERNITZNIG S,PÖLT P,et al.Two IdentifiedLooming Detectors in the Locust:Ubiquitous Lateral Connections among Their Inputs Contribute to Selective Responses to Looming Objects[J].Scientific Reports,2016,6(1):35525.
[85]YUE S,CLAIRE RIND F.Visual Motion Pattern Extraction and Fusion for Collision Detection in Complex Dynamic Scenes[J].Computer Vision and Image Understanding,2006,104(1):48-60.
[86]HU B,ZHANG Z.Bio-Plausible Visual Neural Network forSpatio-Temporally Spiral Motion Perception[J].Neurocompu-ting,2018,310:96-114.
[87]DHANDE O S,HUBERMAN A D.Retinal Ganglion Cell Maps in the Brain:Implications for Visual Processing[J].Current Opinion in Neurobiology,2014,24(1):133-142.
[88]GRAY D,BRENNAN S,TAO H.Evaluating Appearance Mo-dels for Recognition,Reacquisition,and Tracking[J].IEEE International Workshop on Performance Evaluation for Tracking and Surveillance,2007,3(5):1-7.
[89]PROSSER B,ZHENG W S,GONG S,et al.Person Re-Identification by Support Vector Ranking[C]//BMVC 2010.2010.
[90]LOY C C,XIANG T,GONG S.Multi-Camera Activity Correlation Analysis[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.2009:1988-1995.
[91]LI W,ZHAO R,XIAO T,et al.Deepreid:Deep Filter PairingNeural Network for Person Re-Identification[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2014:152-159.
[92]ASMARA R,BASUKI A,ARAI K.A Review of Chinese Aca-demy of Sciences(Casia) Gait Database As A Human Gait Re-cognition Dataset[C]//The 13th Industrial Electronics Seminar2011.2011:267-271.
[93]CHAO H,WANG K,HE Y,et al.Gaitset:Cross-View GaitRecognition through Utilizing Gait as A Deep Set[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(7):3467-3478.
[94]HOU S,CAO C,LIU X,et al.Gait Lateral Network:LearningDiscriminative and Compact Representations for Gait Recognition[C]//European Conference on Computer Vision.2020:382-398.
[95]BABAEE M,LI L,RIGOLL G.Person Identification from Partial Gait Cycle Using Fully Convolutional Neural Networks[J].Neurocomputing,2019,338:116-125.
[96]RISI N,AIMAR A,DONATI E,et al.A Spike-Based Neuromorphic Architecture of Stereo Vision[J].Frontiers in Neurorobotics,2020,14:568283.
[97]READ J C A.Binocular Vision and Stereopsis Across the Animal Kingdom[J].Annual Review of Vision Science,2021,7:389-415.
[98]QUIROGA R Q,REDDY L,KREIMAN G,et al.Invariant Vi-sual Representation by Single Neurons in the Human Brain[J].Nature,2005,435(7045):1102-1107.
[99]QUIAN QUIROGA R,KRASKOV A,KOCH C,et al.Explicit Encoding of Multimodal Percepts by Single Neurons in the Human Brain[J].Current Biology,2009,19(15):1308-1313.
[100]HAN Y,ROIG G,GEIGER G,et al.Scale and Translation-In-variance for Novel Objects in Human Vision[J].Scientific Reports,2020,10(1):1411.
[101]JOGAN M,STOCKER A A.Signal Integration in Human Vi-sual Speed Perception[J].Journal of Neuroscience,2015,35(25):9381-9390.
[102]FITZPATRICK K,BREWER M A,TURNER S.AnotherLook at Pedestrian Walking Speed[J].Transportation Research Record,2006(1982):21-29.
[103]MURTAGH E M,MAIR J L,AGUIAR E,et al.OutdoorWalking Speeds of Apparently Healthy Adults:A Systematic Review and Meta-Analysis[J].Sports Medicine,2021,51:125-141.
[104]BOSINA E,WEIDMANN U.Estimating Pedestrian SpeedUsing Aggregated Literature Data[J].Physica A:Statistical Mechanics and Its Applications,2017,468:1-29.
[105]ISIK L,TACCHETTI A,POGGIO T.A Fast,Invariant Representation for Human Action in the Visual System[J].Journal of Neurophysiology,2018,119(2):631-640.
[106]RAHIMI-NASRABADI H,MOORE-STOLL V,TAN J,et al.Luminance Contrast Shifts Dominance Balance between On and Off Pathways in Human Vision[J].Journal of Neuroscience,2023,43(6):993-1007.
[107]WEI W,YANG W,ZUO E,et al.Person Re-IdentificationBased on Deep Learning-An Overview[J].Journal of Visual Communication and Image Representation,2022,82:103418.
[108]YUE S,RIND F C.Postsynaptic Organisations of Directional Selective Visual Neural Networks for Collision Detection[J].Neurocomputing,2013,103:50-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!