计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 209-222.doi: 10.11896/jsjkx.240500071

• 人工智能 • 上一篇    下一篇

文本人格检测研究综述

朱洋甫, 李美玲, 谭嘉辰, 吴斌   

  1. 北京邮电大学计算机学院 北京 100876
  • 收稿日期:2024-05-20 修回日期:2024-06-16 出版日期:2024-12-15 发布日期:2024-12-10
  • 通讯作者: 吴斌(wubin@bupt.edu.cn)
  • 作者简介:(zhuyangfu@bupt.edu.cn)
  • 基金资助:
    国家自然科学基金(62372060);北京邮电大学优秀博士创新基金(CX2022219)

Study on Text-based Personality Detection-A Review

ZHU Yangfu, LI Meiling, TAN Jiachen, WU Bin   

  1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2024-05-20 Revised:2024-06-16 Online:2024-12-15 Published:2024-12-10
  • About author:ZHU Yangfu,born in 1992,postgra-duate.His main research interests include data mining and personality computing.
    WU Bin,born in 1969,Ph.D,professor,Ph.D supervisor.His main research interests include social computing and complex network.
  • Supported by:
    National Natural Science Foundation of China(62372060) and BUPT Excellent Ph.D. Students Foundation(CX2022219).

摘要: 文本人格检测是人格计算领域一项重要的研究内容,旨在分析用户生成文本中隐含的人格特质。随着社交网络的发展,人们习惯于在线发布蕴含心理活动的内容,这为文本人格检测提供了新的机遇。准确地检测用户人格特质在心理健康诊断、舆情监控、人机交互系统设计以及大语言模型构建等方面具有重要意义。文中对文本人格检测的相关研究和新颖方法进行了深入调研和全面综述。首先介绍了人格检测相关背景知识、任务模式;其次从心理语言学统计方法、特征工程方法、深度学习方法、预训练语言模型4个方面梳理了现有方法;然后对当前广泛使用的评测数据集及模型效果进行了总结;最后从人格检测的可靠性、公平性、伦理与隐私、数据集和评价指标统一以及大语言模型与人格5个方面分析了本领域存在的问题和未来研究方向。

关键词: 人格计算, 社交网络, 用户生成文档, 大语言模型

Abstract: Text-based personality detection is an important research content in the personality computing field,aiming to analyze the implicit personality traits in user-generated text.With the booming of social networks,people are accustomed to posting online content that implies their psychological activities,which provides new opportunities for text-based personality detection.Accurately detecting personality traits is important in psychological health diagnosis,public opinion monitoring,human-computer interac-tion system design,and even in the construction of large language models today.This paper provides a comprehensive review of text-based personality detection.Firstly,it introduces the background and task patterns of personality detection.Secondly,the existing detection methods are categorized into four aspects:psycholinguistic statistical methods,feature engineering me-thods,deep learning methods,and pre-trained language models.Then,the commonly used datasets and model performance are summarized.Finally,the issues and future research in this field are analyzed from five aspects:reliability,fairness,ethical and privacy,the unification of dataset and evaluation metrics,and the relationship between large language models and personality.

Key words: Personality computing, Social networks, User-generated content, Large language model

中图分类号: 

  • TP391
[1]KAUSHAL V,PATWARDHAN M.Emerging trends in per-sonality identification using online social networks-a literature survey[J].ACM Transactions on Knowledge Discovery from Data,2018,12(2):1-30.
[2]MEHTA Y,MAJUMDER N,GELBUKH A,et al.Recenttrends in deep learning based personality detection[J].Artificial Intelligence Review,2020,53(4):2313-2339.
[3]VINCIARELLI A,MOHAMMADI G.A Survey of Personality Computing[J].IEEE Transactions on Affective Computing,2014,5(3):273-291.
[4]YANG Q,NIKOLENKO S,HUANG A,et al.Personality-Dri-ven Social Multimedia Content Recommendation[C]//Procee-dings of the 30th ACM International Conference on Multimedia.2022:7290-7299.
[5]JAISWAL S,SONG S,VALSTAR M.Automatic prediction of depression and anxiety from behaviour and personality attri-butes[C]//Proceedings of 8th International Conference on Affective Computing and Intelligent Interaction.IEEE,2019:1-7.
[6]GHOSH S,MAURYA D K,EKBAL A,et al.EM-PERSONA:emotion-assisted deep neural framework for personality sub-typing from suicide notes[C]//Proceedings of the 29th International Conference on Computational Linguistics.2022:1098-1105.
[7]CHAWLA K,WU I,RONG Y,et al.Be Selfish,But Wisely:Investigating the Impact of Agent Personality in Mixed-Motive Human-Agent Interactions[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.2023:13078-13092.
[8]CHIEN S Y,CHEN C L,CHAN Y C.The Influence of Perso-nality Traits in Human-Humanoid Robot Interaction[J].The Association for Information Science and Technology,2022,59(1):415-419.
[9]LANG Y,LIANG W,WANG Y,et al.3d face synthesis driven by personality impression[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:1707-1714.
[10]WU T,ZHENG K F,WU C H,et al.A Survey on Personality in Cyberspace Security[J].Journal of Electronics & Information Technology,2020,42(12):2827-2840.
[11]YAN D,CAO J,XIE W,et al.PersonalityGate:A general plug-and-play GNN gate to enhance cascade prediction with persona-lity recognition task[J].Expert Systems with Applications,2022,203:117381.
[12]YIN C,ZHANG X,LIU L.Reposting negative information onmicroblogs:Do personality traits matter?[J].Information Processing & Management,2020,57(1):102106.
[13]YANG L,LI S,LUO X,et al.Computational personality:a survey[J].Soft Computing,2022,26(18):9587-9605.
[14]JUNIOR J C S J,GÜÇLÜTÜRK Y,PÉREZ M,et al.First impressions:A survey on vision-based apparent personality trait analysis[J].IEEE Transactions on Affective Computing,2019,13(1):75-95.
[15]ZHAO X M,TANG Z W,ZHANG S Q.Research advance of multimodal personality recognition based on audio and visual cues[J].CAAI Transactions on Intelligent Systems,2021,16(2):189-201.
[16]AKRAMI N,FERNQUIST J,ISBISTER T,et al.Automatic ex-traction of personality from text:Challenges and opportunities[C]//Proceedings of IEEE International Conference on Big Data.IEEE,2019:3156-3164.
[17]ŠTAJNER S,YENIKENT S.A survey of automatic personality detection from texts[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:6284-6295.
[18]ZHANG L,CHEN Z X,YANG B.Personality Analysis and Prediction of Social Network Users[J].Chinese Journal of Compu-ters,2014,37(8):1877-1894.
[19]LEE C H,KIM K,SEO Y S,et al.The relations between personality and language use[J].The Journal of General Psycho-logy,2007,134(4):405-413.
[20]DIGMAN J M.Personality structure:Emergence of the five-factor model[J].Annual review of psychology,1990,41(1):417-440.
[21]JUNG C G.Personality types[J].The portable Jung,1971:178-272.
[22]COSTA J,PAUL T,MCCRAE R.Neo Personality Inventory[EB/OL].https://doi.org/10.1002/9780470479216.corpsy0590.
[23]BUTCHER J N,WILLIAMS C L,GRAHAM J R,et al.Minnesota multiphasic personality inventory-adolescent[M].University of Minnesota Press,1992.
[24]SATO T.The Eysenck personality questionnaire brief version:Factor structure and reliability[J].The Journal of Psychology 2005,139(6):545-552.
[25]KRUMPAL I.Determinants of social desirability bias in sensitive surveys:a literature review[J].Quality & Quantity,2013,47(4):2025-2047.
[26]STACHL C,PARGENT F,HILBERT S,et al.Personality research and assessment in the era of machine learning[J].European Journal of Personality,2020,34(5):613-631.
[27]PENNEBAKER J W,FRANCIS M E.BOOTH R J.Linguistic inquiry and word count:LIWC 2001[J/OL].https://www.researchgate.net/publication/246699633_Linguistic_inquiry_and_word_count_LIWC.
[28]COLTHEART M.The MRC psycholinguistic database[J].The Quarterly Journal of Experimental Psychology Section A,1981,33(4):497-505.
[29]PENNEBAKER J W,KING L A.Linguistic styles:language use as an individual difference[J].Journal of Personality and Social Psychology,1999,77(6):1296.
[30]PENNEBAKER J W,MEHL M R,NIEDERHOFFER K G.Psychological aspects of natural language use:Our words,our selves[J].Annual Review of Psychology,2003,54(1):547-577.
[31]TAUSCZIK Y R,PENNEBAKER J W.The psychologicalmeaning of words:LIWC and computerized text analysis me-thods[J].Journal of Language and Social Psychology,2010,29(1):24-54.
[32]ARGAMON S,DHAWLE S,KOPPEL M,et al.Lexical predictors of personality type[C]//Proceedings of the 2005 Joint Annual Meeting of the Interface and the Classification Society of North America.2005:1-16.
[33]OBERLANDER J,NOWSON S.Whose thumb is it anyway? Classifying author personality from weblogtext[C]//Procee-dings of The International Conference on Computational Linguistics.2006:627-634.
[34]MAIRESSE F,WALKER M A,MEHL M R,et al.Using linguistic cues for the automatic recognition of personality in conversation and text[J].Journal of Artificial Intelligence Research,2007,30(1):457-500.
[35]BACHRACH Y,KOSINSKI M,GRAEPEL T,et al.Personality and patterns of Facebook usage[C]//Proceedings of the 4th Annual ACM Web Science Conference.2012:24-32.
[36]FARNADI G,ZOGHBI S,MOENS M F,et al.Recognising personality traits using facebook status updates[C]//Proceedings of the International AAAI Conference on Web and Social Media.2013:14-18.
[37]ALAM F,STEPANOV E A,RICCARDI G.Personality traits recognition on social network-facebook[C]//Proceedings of the International AAAI Conference on Web and Social Media.2013:6-9.
[38]VOLKOVA S,BACHRACH Y,ARMSTRONG M,et al.Inferring latent user properties from texts published in social media[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015:4296-4297.
[39]BAI S,ZHU T,CHENG L.Big-five personality prediction based on user behaviors at social network sites[J].arXiv:1204.4809,2012.
[40]BAI S,HAO B,LI A,et al.Predicting big five personality traits of microblog users[C]//Proceedings of International Joint Conferences on Web Intelligence and Intelligent Agent Technologies.2013:501-508.
[41]PENG K H,LIOU L H,CHANG C S,et al.Predicting persona-lity traits of Chinese users based on Facebook wall posts[C]//Proceedings of 24th Wireless and Optical Communication Conference.2015:9-14.
[42]ZHONG Y,FEI D Z.Judging Personality by Informal Words:a Sparse PCA Approach[J].Journal of Chinese Information Processing,2017,31(1):192-204.
[43]HUANG C L,CHUNG C K,HUI N,et al.The Development of the Chinese Linguistic Inquiry and Word Count Dictionary[J].Chinese Journal of Psychology,2012,54(2):185-201.
[44]MAJUMDER N,PORIA S,GELBUKH A,et al.Deep learning-based document modeling for personality detection from text[J].IEEE Intelligent Systems,2017,32(2):74-79.
[45]XUE D,WU L,HONG Z,et al.Deep learning-based personality recognition from text posts of online social networks[J].Applied Intelligence,2018,48(11):4232-4246.
[46]HERNANDEZ R K,SCOTT I.Predicting Myers-Briggs type indicator with text[C]//Proceedings of 31st Conference on Neural Information Processing Systems.2017.
[47]TANDERA T,SUHARTONO D,WONGSO R,et al.Personality prediction system from facebook users[J].Procedia Computer Science,2017,116:604-611.
[48]XUE X,FENG J,SUN X.Semantic-enhanced sequential mode-ling for personality trait recognition from texts[J].Applied Intelligence,2021,51(11):1-13.
[49]SUN X,LIU B,CAO J,et al.Who am I? Personality detection based on deep learning for texts[C]//Proceedings of IEEE International Conference on Communications.2018:1-6.
[50]LIU F,PEREZ J,NOWSON S.A Language-independent andCompositional Model for Personality Trait Recognition from Short Texts[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.2017:754-764.
[51]ZHOU L,ZHANG Z,ZHAO L,et al.Attention-based BiLSTM models for personality recognition from user-generated content[J].Information Sciences,2022,596:460-471.
[52]PORIA S,GELBUKH A,AGARWAL B,et al.Common sense knowledge based personality recognition from text[C]//Proceedings of Advances in Soft Computing and Its Applications:12th Mexican International Conference on Artificial Intelligence,2013:484-496.
[53]CAMBRIA E,HAVASI C,HUSSAIN A.Senticnet 2:A semantic and affective resource for opinion mining and sentiment ana-lysis[C]//Proceedings of Twenty-Fifth International FLAIRS Conference.2012:1-6.
[54]HAVASI C,SPEER R,ALONSO J.ConceptNet 3:a flexible,multilingual semantic network for common sense knowledge[C]//Proceedings of Recent Advances in Natural Language Processing.2007:27-29.
[55]HAN S,HUANG H,TANG Y.Knowledge of words:An interpretable approach for personality recognition from social media[J].Knowledge-Based Systems,2020,194:105550.
[56]ZHU Y,HU L,NING N,et al.A lexical psycholinguistic know-ledge-guided graph neural network for interpretable personality detection[J].Knowledge-Based Systems,2022,249:108952.
[57]ARKONI T.Personality in 100,000 words:A large-scale analysis of personality and word use among bloggers[J].Journal of Research in Personality,2010,44(3):363-373.
[58]RAMEZANI M,FEIZI-DERAKHSHI M R,BALAFAR M A.Know-ledge graph-enabled text-based automatic personality prediction[J].Computational Intelligence and Neuroscience.2022,1:3732351.
[59]ZHU Y,GUAN Z,WEI S,et al.PerKG:A Personality Know-ledge Graph for Personality Analysis[C]//Proceedings of IEEE International Conference on Systems,Man,and Cybernetics.2022:580-585.
[60]LI M,LIU H,WU B,et al.Language Style Matters:Personality Prediction from Textual Styles Learning[C]//Proceedings of IEEE International Conference on Knowledge Graph.2022:141-148.
[61]LI M,ZHU Y,LI S,et al.HG-PerCon:Cross-view contrastive learning for personality prediction[J].Neural Networks,2024,169:542-554.
[62]SUN X,LIU B,MENG Q,et al.Group-level personality detection based on text generated networks[J].World Wide Web,2020,23(3):1887-1906.
[63]ROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2016:855-864.
[64]GUAN Z,WU B,WANG B,et al.Personality2vec:Networkrepresentation learning for personality[C]//Proceedings of IEEE Fifth International Conference on Data Science in Cyberspace.2020:30-37.
[65]WANG Z,WU C H,LI Q B,et al.Encoding text information with graph convolutional networks for personality recognition[J].Applied Sciences,2020,10(12):4081.
[66]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:7370-7377.
[67]LYNN V,BALASUBRAMANIAN N,SCHWARTZ H A.Hie-rarchical modeling for user personality prediction:The role of message-level attention[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:5306-5316.
[68]YANG F,QUAN X,YANG Y,et al.Multi-document trans-former for personality detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:14221-14229.
[69]YANG T,YANG F,OUYANG H,et al.Psycholinguistic Tripartite Graph Network for Personality Detection[C]//Procee-dings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:4229-4239.
[70]ZHU Y,HU L,GE X,et al.Contrastive Graph Transformer Network for Personality Detection[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.2022:4559-4565.
[71]YANG T,DENG J,QUAN X,et al.Orders are unwanted:dynamic deep graph convolutional network for personality detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:13896-13904.
[72]ZHU Y,XIA Y,LI M,et al.Data Augmented Graph Neural Networks for Personality Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:664-672.
[73]KEH S,CHENG I.Myers-Briggs personality classification and personality-specific language generation using pre-trained language models[J].arXiv:1907.06333,2019.
[74]JIANG H,ZHANG X,CHOI J D.Automatic text-based perso-nality recognition on monologues and multiparty dialogues using attentive networks and contextual embeddings[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:13821-13822.
[75]MEHTA Y,FATEHI S,KAZAMEINI A,et al.Bottom-up and top-down:Predicting personality with psycholinguistic and language model features[C]//Proceedings of IEEE International Conference on Data Mining.IEEE,2020:1184-1189.
[76]WEN Z,CAO J,YANG Y,et al.DesPrompt:Personality-de-scriptive prompt tuning for few-shot personality recognition[J].Information Processing & Management,2023,60(5):103422.
[77]CHEN L,WU Y,LI Q,et al.Mining the User’s Personality with an Attention-based Label Prompt Method[J].IEEE Intelligent Systems,2023,39(2):31-39.
[78]ZHANG B,HUANG Y,CUI W,et al.PsyAttention:Psycholo-gical Attention Model for Personality Detection[C]//Findings of the Association for Computational Linguistics:EMNLP 2023.2023:3398-3411.
[79]GANESANA V,LAL Y K,NILSSON A H,et al.SystematicEvaluation of GPT-3 for Zero-Shot Personality Estimation[C]//Proceedings of the 13th Workshop on Computational Approaches to Subjectivity,Sentiment,and Social Media Analysis.2023:390-400.
[80]YANG F,YANG T,QUAN X,et al.Learning to answer psychological questionnaire for personality detection[C]//Findings of the Association for Computational Linguistics.2021:1131-1142.
[81]YANG T,SHI T,WAN F,et al.PsyCoT:Psychological Questionnaire as Powerful Chain-of-Thought for Personality Detection[C]//Findings of the Association for Computational Linguistics.2023:3305-3320.
[82]CARON G,SRIVASTAVA S.Manipulating the Perceived Personality Traits of Language Models[C]//Findings of the Association for Computational Linguistics:EMNLP 2023.2023:2370-2386.
[83]JIANG G,XU M,ZHU S C,et al.Evaluating and inducing personality in pre-trained language models[C]//Proceedings of Advances in Neural Information Processing Systems.2023.
[84]BIEL J I,TSIMINAKI V,DINES J,et al.Hi YouTube! Perso-nality impressions and verbal content in social video[C]//Proceedings of the 15th ACM on International Conference on Multimodal Interaction.2013:119-126.
[85]JIANG H,ZHANG X,CHOI J D.Automatic text-based perso-nality recognition on monologues and multiparty dialogues using attentive networks and contextual embeddings[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:13821-13822.
[86]GJURKOVIĆ M,KARAN M,VUKOJEVIĆ I,et al.PANDORA Talks:Personality and Demographics on Reddit[C]//Procee-dings of the Ninth International Workshop on Natural Language Processing for Social Media.2021:138-152.
[87]IGHE E P,URETA J C,POLLO B A L,et al.Personality Trait Classification of Essays with the Application of Feature Reduction[C]//Proceedings of SAAIP@ IJCAI.2016:22-28.
[88]MEHRABI N,MORSTATTER F,SAXENA N,et al.A survey on bias and fairness in machine learning[J].ACM Computing Surveys,2021,54(6):1-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!