计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 116-124.doi: 10.11896/jsjkx.240600004
田青1,2,3, 刘祥1, 王斌1, 郁江森1, 申镓硕1
TIAN Qing1,2,3, LIU Xiang1, WANG Bin1, YU Jiangsen1, SHEN Jiashuo1
摘要: 作为机器学习领域的研究新方向,多无源域适应旨在将多个源域模型中的知识迁移到目标域,以实现对目标域样本的准确预测。本质上,解决多无源域适应的关键在于如何量化多个源模型对目标域的贡献,并利用源模型中的多样性知识来适应目标域。为了应对上述问题,提出了一种基于源模型贡献量化(Source Model Contribution Quantizing,SMCQ)的多无源域适应方法。具体而言,提出了源模型可转移性感知,以量化源模型的可转移性贡献,从而为目标域模型有效地分配源模型的自适应权重。其次,引入了信息最大化方法,以缩小跨域的分布差异,并解决模型退化的问题。然后,提出了可信划分全局对齐方法,该方法用于划分高可信和低可信样本,以应对域差异引起的嘈杂环境,并有效降低标签分配错误的风险。此外,还引入了样本局部一致性损失,以减小伪标签噪声对低可信样本聚类错误的影响。最后,在多个数据集上进行实验,验证了所提方法的有效性。
中图分类号:
[1]TIAN Q,ZHU Y N,SUN H Y,et al.Unsupervised domain adaptation through dynamically aligning both the feature and label spaces[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(12):8562-8573. [2]TIAN Q,CHU Y,SUN H Y,et al.Survey on partial domain adaptation[J].Journal of Software,2023,34(12):5597-5613. [3]TIAN Q,SUN H Y,MA C,et al.Heterogeneous domain adaptation with structure and classification space alignment[J].IEEE Transactions on Cybernetics,2021,52(10):10328-10338. [4]LONG M S,CAO Y,WANG J M,et al.Learning transferablefeatures with deep adaptation networks[C]//International Conference on Machine Learning.PMLR,2015:97-105. [5]LONG M S,CAO Y,CAO Z J,et al.Transferable representation learning with deep adaptation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(12):3071-3085. [6]PENG X C,BAI Q X,XIA X D,et al.Moment matching formulti-source domain adaptation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1406-1415. [7]GANIN Y,LEMPITSKY V.Unsupervised domain adaptationby backpropagation[C]//International Conference on Machine Learning.PMLR,2015:1180-1189. [8]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].Journal of Machine Lear-ning Research,2016,17(1):2096-2030. [9]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial dis-criminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7167-7176. [10]KIM Y,CHO D,HAN K,et al.Domain adaptation withoutsource data[J].IEEE Transactions on Artificial Intelligence,2021,2(6):508-518. [11]LIANG J,HU D P,FENG J S.Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation[C]//International Conference on Machine Learning.PMLR,2020:6028-6039. [12]LI R,JIAO Q F,CAO W M,et al.Model adaptation:unsupervised domain adaptation without source data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9641-9650. [13]YANG S Q,WANG Y X,VAN DE WEIJER J,et al.Unsupervised domain adaptation without source data by casting a bait[J].arXiv:2010.12427,2020. [14]LIN H B,ZHANG Y F,QIU Z,et al.Prototype-guided continu-al adaptation for class-incremental unsupervised domain adaptation[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:351-368. [15]KARIM N,MITHUN N C,RAJVANSHI A,et al.C-SFDA:A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:24120-24131. [16]KIM Y,CHO D,HONG S.Towards privacy-preserving domain adaptation[J].IEEE Signal Processing Letters,2020,27:1675-1679. [17]WANG F,HAN Z Y,GONG Y S,et al.Exploring domain-invariant parameters for source free domain adaptation[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7151-7160. [18]LIANG J,HU D P,FENG J S,et al.Dine:Domain adaptation from single and multiple black-box predictors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:8003-8013. [19]ZHANG H J,ZHANG Y B,JIA K,et al.Unsupervised domainadaptation of black-box source models[J].arXiv:2101.02839,2021. [20]KUNDU J N,VENKAT N,BADU R V.Universal source-free domain adaptation[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2020:4544-4553. [21]WANG F,HAN Z Y,ZHANG Z Y,et al.MHPL:Minimumhappy points learning for active source free domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20008-20018. [22]AHMED S M,RAYCHAUDHURI D S,PAUL S,et al.Unsupervised multi-source domain adaptation without access to source data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10103-10112. [23]DONG J H,FANG Z,LIU A J,et al.Confident anchor-induced multi-source free domain adaptation[J].Advances in Neural Information Processing Systems,2021,34:2848-2860. [24]HAN Z Y,ZHANG Z Y,WANG F,et al.Discriminability andtransferability estimation:a bayesian source importance estimation approach for multi-source-free domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:7811-7820. [25]LI J,DU Z K,ZHU L,et al.Divergence-agnostic unsupervised domain adaptation by adversarial attacks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(11):8196-8211. [26]YE M,ZHANG J,OUYANG J,et al.Source data-free unsuper-vised domain adaptation for semantic segmentation[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:2233-2242. [27]DING N,XU Y,TANG Y,et al.Source-free domain adaptation via distribution estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7212-7222. [28]TIAN Q,MA C,ZHANG F Y,et al.Source-free unsupervised domain adaptation with sample transport learning[J].Journal of Computer Science and Technology,2021,36(3):606-616. [29]KURMI V K,SUBRAMANIAN V K,NAMBOODIRI V P.Domain impression:A sourcedata free domain adaptation method[C]//Proceedings of the IEEE/CVF winter Conference on Applications of Computer Vision.2021:615-625. [30]ZHANG Z,CHEN W,CHENG H,et al.Divide and contrast:Source-free domain adaptation via adaptive contrastive learning[J].Advances in Neural Information Processing Systems,2022,35:5137-5149. [31]YANG S,VAN DE WEIJER J,HERRANZ L,et al.Exploiting the intrinsic neighborhood structure for source-free domain adaptation[J].Advances in Neural Information Processing Systems,2021,34:29393-29405. [32]YANG S,JUI S,VAN DE WEIJER J.Attracting and disper-sing:A simple approach for source-free domain adaptation[J].Advances in Neural Information Processing Systems,2022,35:5802-5815. [33]GUO J,SHAH D J,BARZILAY R.Multi-source domain adaptation with mixture of experts[J].arXiv:1809.02256,2018. [34]YANG L,BALAJI Y,LIM S N,et al.Curriculum manager for source selection in multi-source domain adaptation[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part XIV 16.Springer International Publishing,2020:608-624. [35]ZHAO S,WANG G,ZHANG S,et al.Multi-source distilling domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:12975-12983. [36]ZHAO H,ZHANG S,WU G,et al.Adversarial multiple source domain adaptation[J].Advances in Neural Information Proces-sing Systems,2018,31:8559-8570. [37]XU R,CHEN Z,ZUO W,et al.Deep cocktail network:Multi-source unsupervised domain adaptation with category shift[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3964-3973. [38]LI Y,CARLSON D E.Extracting relationships by multi-domain matching[J].Advances in Neural Information Processing Systems,2018,31:6799-6810. [39]WANG H,YANG W,LIN Z,et al.TMDA:Task-specific multi-source domain adaptation via clustering embedded adversarial training[C]//2019 IEEE International Conference on Data Mi-ning(ICDM).IEEE,2019:1372-1377. [40]SHEN M,BU Y,WORNELL G W.On balancing bias and variance in unsupervised multi-source-free domain adaptation[C]//International Conference on Machine Learning.PMLR,2023:30976-30991. [41]HOFFMAN J,MOHRI M,ZHANG N.Algorithms and theory for multiple-source adaptation[J].Advances in Neural Information Processing Systems,2018,31:8256-8266. [42]ZHAO S,LI B,YUE X,et al.Multi-source domain adaptation for semantic segmentation[J].Advances in Neural Information Processing Systems,2019,32:7285-7298. [43]LI K Q Y,LU J,ZUO H,et al.Multi-source contribution lear-ning for domain adaptation[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(10):5293-5307. [44]ZHANG J,ZHOU W E,CHEN X Q,et al.Multisource selective transfer framework in multiobjective optimization problems[J].IEEE Transactions on Evolutionary Computation,2019,24(3):424-438. [45]BRIDLE J,HEADING A,MACKAY D.Unsupervised classi-fiers,mutual information and ‘phantom targets’[J].Advances in Neural Information Processing Systems,1991,4:1096-1101. [46]KRAUSE A,PERONA P,GOMES R.Discriminative clustering by regularized information maximization[J].Advances in Neural Information Processing Systems,2010,23:775-783. [47]SAENKO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains[C]//Computer Vision-ECCV 2010:11th European Conference on Computer Vision,Heraklion,Crete,Greece,September 5-11,2010,Proceedings,Part IV 11.Springer Berlin Heidelberg,2010:213-226. [48]GONG B Q,SHI Y,SHA F,et al.Geodesic flow kernel for unsupervised domain adaptation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:2066-2073. [49]VENKATESWARA H,EUSEBIO J,CHAKRABORTY S,et al.Deep hashing network for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:5018-5027. [50]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [51]XU R J,CHEN Z L,ZUO W M,et al.Deep cocktail network:Multi-source unsupervised domain adaptation with category shift[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3964-3973. [52]WANG H,XU M H,NI B,et al.Learning to combine:Know-ledge aggregation for multi-source domain adaptation[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part VIII 16.Springer International Publishing,2020:727-744. [53]KIM Y,CHO D,PANDA P,et al.Progressive domain adaptation from a source pre-trained model[J].arXiv:2007.01524,2020. |
|