计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 301-309.doi: 10.11896/jsjkx.240600046
赵川1, 何章钊1,2, 王豪1,2, 孔繁星1,2, 赵圣楠1, 荆山2,3
ZHAO Chuan1, HE Zhangzhao1,2, WANG Hao1,2, KONG Fanxing1,2, ZHAO Shengnan1, JING Shan2,3
摘要: 当前,数据已成为关键战略资源,数据挖掘和分析技术在各行业发挥着重要作用,但也存在着数据泄露的风险。安全函数计算(Secure Function Evaluation,SFE)可以在保证数据安全的前提下完成任意函数的计算。Yao协议是一种用于实现安全函数计算的协议,该协议在混淆电路(Garbled Circuit,GC)生成和计算阶段含有大量加解密计算操作,且在不经意传输(Oblivious Transfer,OT)阶段具有较高的计算开销,难以满足复杂的现实应用需求。针对Yao协议的效率问题,基于现场可编程门阵列(Field Programmable Gate Array,FPGA)的异构计算对Yao协议进行加速,并结合提出的轻量级代理不经意传输协议,最终设计出轻量级异构安全计算加速框架。该方案中,混淆电路生成方和代理计算方都实现了CPU-FPGA异构计算架构。该架构借助 CPU 擅长处理控制流的优势和FPGA的并行处理优势对混淆电路生成阶段和计算阶段进行加速,提高了生成混淆电路和计算混淆电路的效率,减轻了计算压力。另外,相比于通过非对称密码算法实现的不经意传输协议,在轻量级代理不经意传输协议中,混淆电路生成方和代理计算方只需执行对称操作,代理计算方即可获取用户输入对应的生成方持有的随机数。该轻量级代理不经意传输协议减轻了用户和服务器在不经意传输阶段的计算压力。实验证明,在局域网环境下,与Yao协议的软件实现(TinyGarble框架)相比,该方案的计算效率至少提高了128倍。
中图分类号:
[1]GLAESER E L,NATHANSON C G.An extrapolative model ofhouse price dynamics[J].Journal of Financial Economics,2017,126(1):147-170. [2]BOHR A,MEMARZADEH K.The rise of artificial intelligence in healthcare applications[M]//Artificial Intelligence in Healthcare.New York:Academic Press,2020:25-60. [3]LIA B.Globalisation and the future of terrorism:Patterns andpredictions[M].London:Routledge,2007. [4]XIA K,LUO Y,XU X,et al.Sgx-fpga:Trusted execution environment for cpu-fpga heterogeneous architecture[C]//2021 58th ACM/IEEE Design Automation Conference(DAC).NJ:IEEE,2021:301-306. [5]DAUTERMAN E,RATHEE M,POPA R A,et al.Waldo:Aprivate time-series database from function secret sharing[C]//2022 IEEE Symposium on Security and Privacy(SP).NJ:IEEE,2022:2450-2468. [6]DUAN J,ZHOU J,LI Y,et al.Privacy-preserving and verifiable deep learning inference based on secret sharing[J].Neurocomputing,2022,483:221-234. [7]LEE J W,KANG H C,LEE Y,et al.Privacy-preserving machine learning with fully homomorphic encryption for deep neural network[J].IEEE Access,2022,10:30039-30054. [8]KNOTT B,VENKATARAMAN S,HANNUN A,et al.Cryp-ten:Secure multi-party computation meets machine learning[J].Advances in Neural Information Processing Systems,2021,34:4961-4973. [9]SONGHORI E M,ZEITOUNI S,DESSOUKY G,et al.Garbledcpu:a mips processor for secure computation in hardware[C]//Proceedings of the 53rd Annual Design Automation Conference.NJ:IEEE,2016:1-6. [10]NAOR M,NISSIM K.Communication preserving protocols for secure function evaluation[C]//Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing.NY:ACM,2001:590-599. [11]YAO A C C.How to generate and exchange secrets[C]//27th Annual Symposium on Foundations of Computer Science(sfcs 1986).NJ:IEEE,1986:162-167. [12]CHOU T,ORLANDI C.The simplest protocol for oblivioustransfer[C]//International Conference on Cryptology and Information Security in Latin America.Berlin:Springer,2015:40-58. [13]KHOKHAR A A,PRASANNA V K,SHAABAN M E,et al.Heterogeneous computing:Challenges and opportunities[J].Computer,1993,26(6):18-27. [14]MITTAL S,VETTER J S.A survey of CPU-GPU heteroge-neous computing techniques[J].ACM Computing Surveys(CSUR),2015,47(4):1-35. [15]BRODTKORB A R,DYKEN C,HAGEN T R,et al.State-of-the-art in heterogeneous computing[J].Scientific Programming,2010,18(1):1-33. [16]LIU X,OUNIFI H A,GHERBI A,et al.A hybrid GPU-FPGA-based computing platform for machine learning[J].Procedia Computer Science,2018,141:104-111. [17]LEESER M,GUNGOR M,HUANG K,et al.Accelerating large garbled circuits on an FPGA-enabled cloud[C]//2019 IEEE/ACM International Workshop on Heterogeneous High-perfor-mance Reconfigurable Computing(H2RC).NJ:IEEE,2019:19-25. [18]JÄRVINEN K,KOLESNIKOV V,SADEGHI A R,et al.Embedded SFE:Offloading server and network using hardware tokens[C]//International Conference on Financial Cryptography and Data Security.Berlin:Springer,2010:207-221. [19]HUSSAIN S U,ROUHANI B D,GHASEMZADEH M,et al.Maxelerator:FPGA accelerator for privacy preserving multiply-accumulate(MAC) on cloud servers[C]//Proceedings of the 55th Annual Design Automation Conference.NJ:IEEE,2018:1-6. [20]ROUHANI B D,HUSSAIN S U,LAUTER K,et al.ReDCrypt:real-time privacy-preserving deep learning inference in clouds using FPGAs[J].ACM Transactions on Reconfigurable Techno-logy and Systems(TRETS),2018,11(3):1-21. [21]FANG X,IOANNIDIS S,LEESER M.Secure function evaluation using an fpga overlay architecture[C]//Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.NY:ACM,2017:257-266. [22]FANG X,IOANNIDIS S,LEESER M.SIFO:Secure computational infrastructure using FPGA overlays[J].International Journal of Reconfigurable Computing,2019,2019:1-18. [23]HUSSAIN S U,KOUSHANFAR F.FASE:FPGA acceleration of secure function evaluation[C]//2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines(FCCM).NJ:IEEE,2019:280-288. [24]WOLFE P F W.Enabling secure multi-party computation with FPGAs in the datacenter[D].Boston:Boston University,2021. [25]HU X,LI M,TIAN J,et al.Efficient Homomorphic Convolution Designs on FPGA for Secure Inference[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2022,30(11):1691-1704. [26]SONGHORI E M,HUSSAIN S U,SADEGHI A R,et al.Tinygarble:Highly compressed and scalable sequential garbled circuits[C]//2015 IEEE Symposium on Security and Privacy.NJ:IEEE,2015:411-428. [27]KOLESNIKOV V,SCHNEIDER T.Improved garbled circuit:Free XOR gates and applications[C]//International Colloquium on Automata,Languages,and Programming.Berlin:Springer,2008:486-498. [28]BEAVER D,MICALI S,ROGAWAY P.The round complexity of secure protocols[C]//Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing.NY:ACM,1990:503-513. |
|