计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600096-6.doi: 10.11896/jsjkx.240600096
黄傲1, 李敏1, 曾祥光1, 潘云伟1, 张加衡1, 彭倍2
HUANG Ao1, LI Min1, ZENG Xiangguang1, PAN Yunwei1, ZHANG Jiaheng1, PENG Bei2
摘要: 旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题,求解难度较大。传统遗传算法在求解旅行商问题时,参数调节过分依赖经验,同时种群多样性过早减少会导致局部收敛,严重影响算法性能。为此,提出一种自适应杂交遗传算法(Adaptive Hybrid Genetic Algorithm,AHGA),采用深度强化学习对遗传算法的关键参数进行自适应调整。首先,构建了以遗传算法为环境的自适应参数调节模型,采用近端策略优化(Proximal Policy Optimization,PPO)算法来生成控制种群进化的动作策略。其次,在传统遗传算法交叉、变异的基础上增加杂交算子,以提高迭代后期种群的多样性。最后,在不同的TSPLIB公共实例中验证算法的效果和性能。结果表明,该算法明显提高了遗传算法的求解质量和收敛速度,有效避免了遗传算法的局部收敛问题,在解决旅行商问题时优于同类算法。
中图分类号:
[1]XU W H,WEI C X,ZHANG G R.Genetic Algorithm for Tra-veling Salesman Problem Based on K-Nearest Neighbors Search [J].Journal of Kunming University of Science and Technology(Natural Science),2022,47(1):139-146. [2]LI C,WANG N,ZHANG C.Hierarchical Mission Planning for Cleaning Photovoltaic Panels Based on Improved Genetic Algorithm[J].Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University,2021,55(9):1169-74. [3]WANG S,LIU G,GAO M,et al.Application of improved adaptive genetic algorithm in TDOA location[J].Journal of Systems Engineering and Electronics,2019,41(2):254-258. [4]XU J,HAN F Q,LIU Q X,et al.Bioinformation Heuristic Genetic Algorithm for Solving TSP[J].Journal of System Simulation,2022,34(8):1811-1819. [5]CHEN R,YANG B,LI S,et al.A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem [J].Computers and Industrial Engineering,2020,149:106778. [6]KOKSAL AHMED E,LI Z,VEERAVALLI B,et al.Reinforcement learning-enabled genetic algorithm for school bus scheduling [J].Journal of Intelligent Transportation Systems:Technology,Planning,and Operations,2022,26(3):269-83. [7]SONG Y,WEI L,YANG Q,et al.RL-GA:A ReinforcementLearning-based Genetic Algorithm for Electromagnetic Detection Satellite Scheduling Problem [J].Swarm and Evolutionary Computation,2023,77. [8]SHENMAIER V.Efficient PTAS for the maximum travelingsalesman problem in a metric space of fixed doubling dimension [J].Optimization Letters,2022,16(7):2115-2122. [9]SCHULMAN J,WOKSKI F,DHARIWAL P,et al.Proximalpolicy optimization algorithms [J].arXiv:1707.06347,2017. [10]QUEVEDO J,ABDELATTI M,IMANI F,et al.Using rein-forcement learning for tuning genetic algorithms [C]//EGCCO 2021.France:Association for Computing Machinery,2021. [11]JIAN-TING C,YANG X.Survey of Unstable Gradients in Deep Neural Network Training [J].Journal of Software,2018,29(7):2071-91. [12]ZENG D,YAN T,ZENG Z,et al.A Hyperparameter Adaptive Genetic Algorithm Based on DQN [J].Journal of Circuits,Systems and Computers,2023,32(4). [13]DORIGO M,GAMBARDELLA L M.Ant colonies for the tra-velling salesman problem [J].Biosystems,1997,43(2):73-81. [14]GLOVER F W.Tabu Search - Part I [J].INFORMS J Comput,1989,1:190-206. [15]ZHANG C,TU L,WANG J.Application of self-adaptive antcolony optimization in TSP [J].Journal of Central South University(Science and Technology),2015,46:2944-2949. [16]DAI H,KHALIL E B,ZHANG Y,et al.Learning combinatorial optimization algorithms over graphs [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6351-6361. [17]WU Y,SONH W,CAO Z,et al.Learning Improvement Heuristics for Solving Routing Problems [J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):5057-5069. [18]GUNDUZ M,KIRAN M S,OZCEYLAN E.A hierarchic ap-proach based on swarm intelligence to solve the traveling salesman problem [J].Turkish Journal of Electrical Engineering and Computer Sciences,2015,23(1):103-117. |
|