计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 135-141.doi: 10.11896/jsjkx.240600124
万照麟1, 马广哲2, 米乐2, 栗志扬2,3, 范晓鹏1
WAN Zhaolin1, MA Guangzhe2, MI Le2, LI Zhiyang2,3, FAN Xiaopeng1
摘要: 作为形状的一种简洁表示,骨架同时保留了形状的几何特性以及完整的拓扑结构。在骨架计算中,基于势场的方法认为骨架位于势场曲面的奇异点区域,并能够提供拓扑正确的连续骨架表示。但目前该方法得到的骨架仍然存在一些局限性,比如对噪声和等距变换敏感度较高等。为了解决这些问题,假定形状边界上均匀放置电荷,定义了一种新型的电势场用于二维骨架的计算。不同于传统势场采用欧氏距离,提出了利用热核函数来逼近形状内部的测地距离,进而计算形状内部的新型电势分布。由于热核测地距具有光滑性,因此其对形状噪声和等距变换表现出更强的鲁棒性。进一步,基于Nyström距离插值技术,提出了所定义势场的快速计算方法。最后,在两个形状数据集上进行了大量的骨架计算实验,分析了方法的主要参数。实验表明,所提方法可以产生稳定且简洁的形状骨架,在噪声的鲁棒性方面优于主流的骨架计算方法。
中图分类号:
[1]KURNIANGGORO L,WAHYON O,JO K H.A survey of 2d shape representation:Methods,evaluations,and future research directions[J].Neurocomputing,2018,300:1-16. [2]LI Z,QU W,QI H,et al.Near-convex decomposition of 2d shape using visibility range[J].Computer Vision and Image Understanding,2021,210:103243. [3]ZOU Z,CHEN K,SHI Z,et al.Object detection in 20 years:A survey[J].Proceedings of the IEEE,2023,111(3):257-276. [4]YU X,GAO Y,BENNAMOUN M,et al.A Lie algebra representation for efficient 2d shape classification[J].Pattern Recognition,2023,134:109078. [5]BARMAN A,DUTTA P.Facial expression recognition usingdistance and shape signature features[J].Pattern Recognition Letters,2021,145:254-261. [6]YANG C,FANG L,FEI B,et al.Multi-level contour combination features for shape recognition[J].Computer Vision and Image Understanding,2023,229:103650. [7]JOSEPH-RIVLIN M,ZVIRIN A,KIMMEL R.Momenet:Flavor the moments in learning to classify shapes[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.2019. [8]OSOWSKI S,NGHIA D D.Fourier and wavelet descriptors for shape recognition using neural networks-a comparative study[J].Pattern Recognition,2002,35(9):1949-1957. [9]DAMON J.Rigidity properties of the blum medial axis[J].Journal of Mathematical Imaging and Vision,2021,63(1):120-129. [10]CAI X Q,YANG Z,CAI R B,et al.Image Skeleton Extraction Method Based on Flood-Fill[J].Journal of System Simulation,2020,32(8):1455-1464. [11]ISAKARI H.A fast skeletonisation of 2D objects using a generalised double-layer potential and the H-matrix method[J].Transactions of the Japan Society for Computational Methods in Engineering,2023,23:115-121. [12]CRANE K,WEISCHEDEL C,WARDETZKY M.The heatmethod for distance computation[J].Communications of the ACM,2017,60(11):90-99. [13]BAI X,LATECKI L J,LIU W Y.Skeleton pruning by contour partitioning with discrete curve evolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):449-462. [14]ENGWIRDA D.Locally optimal Delaunay-refinement and op-timisation-based mesh generation[D].Sydney:University of Sydney,2015. [15]SHAMAI G,ZIBULEVSKY M,KIMMEL R.Efficient inter-geodesic distance computation and fast classical scaling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(1):74-85. [16]GAO F,WEI G,XIN S,et al.2d skeleton extraction based on heat equation[J].Computers Graphics,2018,74:99-108. [17]IGLESIAS-COFÁN S,FORMELLA A.Guided thinning[J].Pattern Recognition Letters,2019,128:176-182. [18]EL-GAALY T,FROYEN V,ELGAMMAL A,et al.A Bayesian approach to perceptual 3D object-part decomposition using ske-leton-based representations[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.AAAI,2015:3762-3768. [19]REZANEJA M,SIDDIQI K.Flux graphs for 2D shape analysis[M]//Shape Perception in Human and Computer Vision.London:Springer,2013:41-54. [20]SU C Y,LIU X Y.Skeleton Extraction Algorithm Based onHeat Method[J].Computer and Modernization,2022,23(3):59-63. [21]MA G,WANG X,LIU X,et al.Computing 2D Skeleton viaGeneralized Electric Potential[C]//The 6th Chinese Conference on Pattern Recognition and Computer Vision.Springer-Verlag,2023:346-357. [22]SHEN W,BAI X,YANG X W,et al.Skeleton pruning as trade-off between skeleton simplicity and reconstruction error[J].Science China Information Sciences,2013,56:1-14. [23]SHEN W,BAI X,HU R,et al.Skeleton growing and pruning with bending potential ratio[J].Pattern Recognition,2011,44(2):196-209. |
|